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Abstract. The nature and history of the research area common to ar-
tificial intelligence and symbolic mathematical computation are exam-
ined, with particular reference to the topics having the greatest cur-
rent amount of activity or potential for further development: mathemat-
ical knowledge-based computing environments, autonomous agents and
multi-agent systems, transformation of problem descriptions in logics
into algebraic forms, exploitation of machine learning, qualitative rea-
soning, and constraint-based programming. Knowledge representation,
for mathematical knowledge, is identified as a central focus for much of
this work. Several promising topics for further research are stated.

As an introduction to the proceedings of the first international conference
that was devoted specifically to symbolic mathematical computing (SMC) and
artificial intelligence, we wrote a combination of a short survey and a summary
of our predictions and suggestions for the future development of the territory
common to those two subjects[1]. The present paper revisits the same areas, as
well as remarking on results that have been reported during some of the time
since the first conference in 1992.

In the earlier paper, we reviewed the history of SMC with reference to its
associations with - and, for some years, detachment from - Al. Following that
review, we indicated several topics where SMC had contributed to modern ATl or
was in a position to do so, and then repeated the exercise for the actual and likely
influences of AT on SMC. In addition, we singled out knowledge representation
as the area in which the links between the two subjects were strongest and
also appeared to have the greatest potential for future exchanges of mutual
benefit. The present paper reflects this kind of organisation: progress since the
first conference has followed the lines that we predicted in [1]. A selection of
papers on significant work that had started before the conference, and that was
reported there, is published in the current issue of this journal.

Historical Perspective

In the earliest period of Al research, the nearest thing to ”applied AI” was SMC.
That 1s to say, papers that were clearly about SMC made their appearance



commonly in media where Al was most often represented, and - unlike other
Al papers at the time - concerned software or computed results that had been
sought by, and were of immediate value to, people outside both AT and SMC.
Celestial mechanics and high-energy particle physics were the first two serious
areas of application of SMC, as papers like [2] and [3] and earlier references cited
there indicate. Even though it occurred before the Dartmouth College summer
workshop that is often regarded as marking the transition from prehistory to
history in AT [4], the writing of two programs for symbolic differentiation has
been quoted subsequently as an example of early AI. More visibly than any of
these events, Al used SMC because of the choice of integration in finite terms as a
problem that could stimulate advances in its techniques. In terms of software, the
two highlights of this line of activity were Slagle’s SAINT [7] and the programs
of J. Moses that were later absorbed into the MACSYMA project on SMC [8].

Soon after the period covered above, which lasted until about 1970, SMC
material became harder to find in Al conferences and publications. The transi-
tion to near-invisibility was very rapid. One reason for this was the increased
production of theoretical or conceptual papers in Al for its own sake. But the
major reason, as we can interpret it after the event, is also something that has
happened to other parts of Al since then: the transition of the information used
for representation and reasoning from heuristics to algorithms. This also lies be-
hind the popular saying among Al practitioners that ” Al exports its successes”.
Once a topic where the knowledge was originally expressed heuristically arrives
at a state where algorithms express its most efficient methods of computation,
it tends to disappear from papers at Al conferences. Historically, this happened
first for SMC, through the transition from the basically heuristic methods used
by Slagle and Moses to the implementation of what is now known as the Risch-
Norman algorithm [9] for integration in finite terms. This evolution has been
repeated for other topics, such as 3-dimensional interpretation of edges in 2-
dimensional views (with respect to the Waltz filtering procedure [10]) and the
Hough transform [11] in feature detection in images.

For nearly 20 years, the resulting separation between Al and SMC continued.
But we are now seeing an increasing amount of convergence between the two
subjects. The overlap has become steadily more evident with each successive
biennial conference (of which there have now been three) on AT and SMC. The
explanation for the convergence is that each subject, in its present state, stands
to gain some advantage from the other.

The actual range of capabilities of SMC systems has not changed much for
some years. Their character has changed, but primarily because of improved algo-
rithms in their existing applications, or purpose-built modules to draw together
what were previously users’ programs for specific variants of these applications.
In many instances, probably a large majority, users are at home with this situa-
tion. In other instances, one sees users carrying out pen-and-paper manipulations
on problems in order to state them in forms that are acceptable inputs for current
SMC. According to at least one of the earliest implementers of SMC software,
the work was partly to remove the need for pen-and-paper manipulations among



people who wished to carry their formulations of problems to a stage that could
serve as input to Fortran programs. If a good SMC capability exists, it should
ideally eliminate any ” off-line” manipulations that users would prefer to pass to a
computer. Answering this challenge in general calls for mathematical knowledge
to be embedded in SMC environments: hence the relevance of Al, which deals
centrally with the representation of knowledge and its use in reasoning. Al has
a particular track record in dealing with multiple heterogeneous representations
of knowledge, which is the situation one faces necessarily in using mathematical
knowledge (e.g. expressions in logics, algorithms, hierarchical collections of infor-
mation, heuristics, examples of problems and their solutions) as mathematicians
use it.

Just as many desirable advances in SMC will have to rely on methods of
AT, AT in some of its most active areas can benefit from access to SMC. Two
areas in particular fit this statement: qualitative reasoning, and multi-agent sys-
tems. In the former, the mathematical expressions used resemble those of dif-
ferential calculus but require also the flexibility of defining simplifications and
other manipulations that typical SMC systems do not offer. In the latter, some
sub-problems have a strong element of mathematical modelling, and demand
the kinds of knowledge that a good human modeller deploys. At present, the
mathematical parts of such computations are usually reduced to pen-and-paper
exercises, or processed by programs inside the larger Al-based software that
merely reproduce the simple SMC capabilities of 30 or more years ago. Some
environments for qualitative reasoning and for multi-agent computations can do
better than that, but the integration of Al and SMC in these areas is still quite
a new issue, and much useful work remains to be done.

There is one further reason for the convergence of Al and SMC. The de-
scription that we gave in [1] is still valid: ”....specialists in knowledge representa-
tion are becoming interested in capturing and using the considerable amount of
heuristic knowledge that mathematicians possess about suitable symbolic struc-
tures. Apart from the technical interest of doing this, there is the attraction that
success will make 1t possible to build practical systems that combine operational
mathematical knowledge with the calculational capabilities of present systems
like MACSYMA and REDUCE. Any substantial progress in this area will give
such systems their first significant boost in functionality since the early 1970s”.

In the past history of SMC, capturing heuristic knowledge about some topic
T has been the first step towards finding algorithms for T that are at least equally
effective in actual use. Where there has been a final step for a T where Al and
SMC have both been involved, as we have said, the final step has often been that
T has disappeared into the most technical depths of SMC publications and has
become invisible to Al. In the future history of AT and SMC, this is rather less
likely. Both heuristics and algorithms for any interesting T have a place, e.g. in
different parts of a mathematical knowledge base, and can illuminate each other.
For example, features of one can be used to support proofs or explanations of the
other, or treated as cues for retrieval of the other if problem-solving computations
include any case-based or analogical reasoning. The underlying point is that



the design and construction of mathematical knowledge bases is desirable (and
practicable) for progress in the theoretical and applied sides of both AT and
SMC.

A Central Issue: Knowledge Representation

In typical SMC systems the representation(s) that the builders have selected
are for their own convenience or for computational efficiency. Sometimes these
two are the same thing. Most users have paid no special attention to this, as it
has coincided with their own interests. The data structures are therefore fixed,
as are the ”knowledge structures”, which are primarily programs expressing the
most efficient algorithms in the most efficient ways. Inspectability of this lat-
ter material is not in question. On occasions, multiple ways of structuring the
data and showing this information to the user are possible: as one-dimensional
(Fortran-like) or two-dimensional (imitating typeset mathematical expressions)
transcriptions, or as graphs after numerical substitutions for symbolic variables,
for example.

To apply methods of Al to their fullest extent, this approach to representation
must be replaced by schemes in which the mathematical knowledge is available
explicitly and in which arbitrary computations on that knowledge can be carried
out without any redesign or rebuilding of the framework in which it is held.
Here, SMC can borrow directly from the collected experience of Al research
(e.g. [12] [13]) on knowledge representation, which has led to suggestions of
between 10 and 20 different representations for knowledge. Initially, at least,
SMC can exploit the most standard representations that are quoted in general Al
textbooks: rules, inheritance networks, and frames. Many examples of knowledge
of mathematical properties fit each of them; to do full justice to mathematical
reasoning, some of the more exotic representations (in addition to ”logic”, which
is both a representation and a reasoning device) may recommend themselves.
We return to that point later. It may even happen that future research on the
nature of mathematical reasoning will lead to the development of representations
that will be new in the AT literature.

The simplest (and historically the earliest) way of combining SMC facili-
ties with knowledge (about how and when to use them) has been to write the
knowledge into sets of rules, and to make these sets control the use of parts
of the SMC software. In effect, the control mechanism is a small expert system,
although in typical implementations the SMC environment retains the basic con-
trol and consults the rules for indications of when its usual behaviour should be
modified. Vivet [14] gives an early example. Later examples (e.g. [15]) are not
uncommon, and at least one general SMC environment (Mathematica) allows
its users to state rule-like information about how a computation should run in
some circumstances.

While these examples are literally mathematical knowledge-based systems,
their use 1s limited quite tightly to the problems for which they have been de-
fined. To be more generally valuable, systems should permit ready use of their



mathematical knowledge, when it is relevant, for computations other than the
ones for which they were built. In other words, expanding the range of the math-
ematical knowledge and reasoning capabilities should be a cumulative process
without constant rewriting and redesigning. An example of an approach driven
by these considerations (though with much larger and more general ambitions
about knowledge), and containing useful ideas about points and methods to con-
sider when one is aiming to specify a framework for common use of knowledge
on different topics, is the CYC project [16].

If we grant that mathematical knowledge in a general-purpose system will
be heterogeneous, then an early practical requirement that we face is to ensure
that navigation inside the knowledge base goes as quickly as possible to items
that are relevant for a given computation, and ignores material or possible steps
of reasoning that are not appropriate. Here, computer science offers a strong
hint: if one has such a requirement and the information that one is processing
contains types, demand that the type be given along with each piece of informa-
tion, and use the types in the computations that follow. The kind of declaration
and exploitation of types that one sees in (for example) debuggers and compilers
for typed languages is one model of design that can be applied to mathemati-
cal knowledge-based systems, especially where domain objects (e.g. polynomial
rings, finite fields) are naturally modular. These objects can then be arranged in
hierarchies, and each one can carry a type schema with names, names of objects
from which properties are inherited, associated operators, axioms governing op-
erators and elements, etc. This approach appeared first in SMC in the series
of systems that have led to AXIOM [17]; it has also been used successfully in
environments such as MANTRA (Modular Assertional, Semantic Network and
Terminological Representation Approach) where both AT and SMC considera-
tions have applied [18] [19]. We mention this as one example of how to respond
to the considerations that we have given above.

The goal for MANTRA was to introduce algebraic algorithms, and indeed
computer algebra systems, as a novel knowledge representation paradigm. At
the beginning of that work, no existing system fitted that description. Imple-
mentation was guided by the following opinions about design:

1. Several cooperating formalisms are better than a unique representation for-
malism,;

2. A clear semantics explaining the meaning of the knowledge representation
language is fundamental,;

3. All algorithms involved must be decidable, and reasonably fast.

In a knowledge engineering perspective, MANTRA may also be regarded as a
general-purpose shell for building large mathematical knowledge-based systems.

The system provides four different representation formalisms that can inter-
act through hybrid inference algorithms. The motivation is that several cooper-
ating formalisms ought to enhance the expressiveness and inferential power of
a system. The knowledge-representation approach consists of a representational
theory, explaining which knowledge is to be represented by which formalisms,



and a common semantics to define the relationship between expressions of differ-
ent formalismsin a semantically sound manner. The decidability of all algorithms
involved is ensured by adopting a four-valued semantics based on works of Belk-
nap, P.F. Patel-Schneider, A.M. Frisch, R.H. Thomason and others. The four
knowledge representation formalisms mentioned above are all supported, along
with the usual Al inference mechanisms for each.

It is convenient to regard the MANTRA architecture in terms of levels. The
lowest consists of components involving logic, frames and inheritance networks
(semantic nets), and is an epistemological level. The second level, the logical
level, consists of the inference mechanisms, including those that permit hybrid
inferences among the different lowest-level representations, and means for man-
agement of the knowledge bases. The highest level is a heuristic level, with rep-
resentation of procedural knowledge of domains, and rules. The heuristic-level
knowledge 1s expressed in production rules that are processed by an OPSb5-like
rule interpreter. The overall system was written in Common Lisp using the
object-oriented extension CLOS, and is supplemented by a graphical user inter-
face produced in C with XToolkit.

As a test of the effectiveness of the architecture, the computer algebra system
REDUCE was added as a component at the epistemological level, and was found
to communicate in the expected way with the other knowledge-representation
formalisms. One aim of that exercise was to show that the extended system could
work as a tutoring system for REDUCE users.

The MANTRA framework above does not take account of types. More re-
cent work in the same project has included the design of a specification language,
FORMAL [17], which allows enough richness of type structure to accommodate
mathematical knowledge (for which specification languages in more traditional
areas of computer science are not yet adequate). The ultimate goal is "to exe-
cute” specifications, e.g. to query properties of the specified structures, by trans-
forming the specifications into another language - MANTRA - for which inference
mechanisms exist.

Two branches of theoretical computer science play the main roles here: alge-
braic specification and type theory. The former studies ADTs or abstract data
types (signatures, i.e. sets of type- and function-names, and sets of axioms). One
then reasons about models of the ADTs, which can be regarded as ”implemen-
tations” of the types and functions of the signatures that fulfil the requirements
(axioms) of the specification. Thus, reasoning about ADTs and reasoning about
”implementations” should ultimately be the same thing, and the theory for an
ADT should be the set of theorems that are valid for it.

Existing specification languages in computer science are often based on uni-
versal algebras and category theory - as is FORMAL - but their many-sorted and
order-sorted algebras are not rich enough to describe all the useful properties of
material that is likely to occur in a good mathematical knowledge-based system.
Further research is needed on types, e.g. type hierarchies, parametrisation of
types (both of which can be treated in FORMAL), types of higher-order func-
tions, and higher-order types in general. For example, one tries to find models



for such type systems and to classify them according to considerations like

— Does each possible expression have a unique type?

— Is the type of an expression computable?

— Is the correctness of the type of an expression decidable?

— What dependencies exist? (i.e. What can be parametrised by what?)

A research agenda in this direction, to develop appropriate knowledge-representation
schemes for SMC, should have other components also. One of those components
should involve finding (semi)automatic means to enable simultaneous typing and
specification. This capability is not needed if, say, one can write specifications
along with the algorithms to which they refer. However, this is not sufficient if
one wants to couple computing (use of the algorithms) with deduction or other
reasoning about what the algorithms are doing to the current data. Another
component that deserves further research is the checking of completeness of
specifications (e.g. of the list of properties for a given operator). Present comple-
tion algorithms, where they exist, are generally very inefficient. Therefore it may
pay to investigate whether methods of machine learning can generate heuristics
to achieve completion. Usually, when a property (equation) is encountered, one
checks immediately whether it is a new property - but it is possible to delay
such a check and to consider the new equation as a training instance that will be
processed later during a learning phase. It is possible to prove that algorithms
of this kind exist, but there is scope for much additional work.

The discussion above is at the formal end of the implications of knowledge
representation. There is also an informal end, where the knowledge and the
reasoning have not drawn significant support from logics and from any intrinsic
mathematical properties. This involves the use of patterns, examples, narrations
etc. of successful instances (and sometimes unsuccessful instances, as guides to
what to avoid in tackling similar exercises in the future) of solution of a problem.
It is not hard to find literature on mathematical problem-solving behaviour of
this kind; some (e.g. [20] [21]) has classic status. Even when the sources for
the behaviour are learners and not professional mathematicians, it is fair to
describe the actions and the results in a ”case”. A case is a recognised knowledge
representation in Al, though not primitive: it can be written in a variety of
ways in terms of simpler representations. Case-based reasoning [22] is a well-
known and expanding area of Al, but apparently not reported in papers on Al
and mathematics so far. The existence of this gap in coverage is a challenge
for AT and SMC: how far can one use case-based methods from elsewhere in
AT to represent and exploit mathematical knowledge, whether for solution of
significant problems or for ”debugging” misconceived behaviour of students or
even inexperienced users of computer algebra systems?

Areas of Interaction between AI and Symbolic
Mathematical Computing

We organise this section of the paper according to the areas in which the most
significant activity has been taking place recently.



Autonomous Agents and Multi-Agent Systems

The traditional AT approach to multi-agent systems (MAS) has been in terms
of logic, or at least the notation of logic (e.g. in the design of primitives and
schemes for inter-agent communication, and formation of individual and joint
plans). But it is increasingly evident that the character of MAS requires alterna-
tive or extra forms of description that are not available via this traditional path.
It is sometimes advantageous to view the systems in a social or socio-economic
perspective, sometimes as competitors for limited resources, and sometimes as
dynamical systems in the sense of classical or statistical mechanics. In all of these
perspectives, the common tool for a better understanding of the systems’ prop-
erties and behaviour is mathematical modelling. Moreover, a variety of mathe-
matical techniques and knowledge occurs in such modelling in the subjects that
have exploited those perspectives in the past. Some of the recent history of MAS
research has been the identification of correspondences between aspects of MAS
and aspects of problems in other fields where modelling has been effective, fol-
lowed by application of the same kinds of modelling to clarify properties of agents
and their interactions. Use of SMC software and representations of mathematical
knowledge has the potential to enhance such activities in the future, in two ways.
First, SMC can increase the speed and reliability of modellers’ reasoning about
MAS and derivation of theorems and other results. A good example is a study of
the possible behaviours of agents in changeable situations where the breaking of
contracts, at some cost, may be advisable [23]. The mathematical manipulations
involve a mixture of integral expressions, examples, inequalities and the drawing
of graphs by way of clarification. Second, individual agents reason about other
agents, themselves, and their environment. Typically, this reasoning is expressed
in the logic-based form that we have mentioned at the beginning of this sub-
section. But there are aspects of what can be reasoned about (e.g. behaviours
that can be reduced to observation, generation or prediction of trajectories in
coordinate or other spaces) that do not fit comfortably into logical notation.
An agent dealing with such phenomena can benefit from viewing reasoning as a
mathematical modelling process, and having access to SMC to support it.

Modelling not only involves re-using existing terms and methods after analo-
gies are made between MAS and the areas where they have been used in the
past. If we are trying to understand the nature of MAS and their behaviour, it
may sometimes be necessary to call upon concepts that are new in modelling.
For example, Pfalzgraf, Sigmund and Stokkermans [24] have considered deduc-
tive planning activities, e.g. path planning, in a simple robotic MAS, and have
shown how to use logical fiberings (on agents’ state spaces) to add semantics to
the planning process. This approach opens further questions for research, e.g.
on how to handle expressions dependent on space and time coordinates, and on
hierarchical planning.

An alternative to path planning with logic is the use of classical mechanics.
Here, locations that should lie on a path are given attractive potentials, and lo-
cations such as obstacles, which should be avoided, are associated with repulsive
potentials. The path is then determined as the solution to a variational problem.



The same general method can deal with highly complicated practical instances,
e.g. collision-free motion of articulated robots for welding in a shipyard. Over-
gaard, Petersen and Perram [25] use this underlying discipline in a scheme where
each link of each jointed robot is treated as a single agent, and where equations
of motion with kinematic constraints govern the required motion and specify
that the robots do not collide with other objects or with themselves. Although
sets of equations for real robots will usually be solved numerically, SMC allows
development of such equations and explorations of their gross properties. We
quote this paper as just one example of quite a large literature on constrained
dynamics for robots and robotic agents.

An example of the social or socio-economic approach to MAS is a paper on
dilemmas by Glance and Hogg [26]. Here, in particular, the paradox that adding
resources to what is available to a group of agents can degrade the performance
of the group i1s examined. Another such example is a study of the dynamics of
computational ecosystems [27]. What is common to such studies is the manipu-
lation of sets of equations and inequalities, where SMC has the same relevance
for its ability to support the development and analysis of the sets.

Other topics in MAS where SMC can act as a support tool for researchers
are the design of algorithms for basic activities such as communication (e.g.
by parametrising families of algorithms and examining the effects of varying
the parameters) and in equational deduction. Papers that describe the topics
themselves in suggestive ways are by Decker and Lesser [28] and Denzinger [29]
respectively.

As agents become more complex, it is likely that they will need their own
access to mathematical modelling facilities in order to interpret their surround-
ings better. In MAS research it is already recognised that agents can and should
maintain models of (beliefs about) other agents, for example, These models are
expressed in rather simple logical notation, but do not capture in transparent
or efficient ways the kinds of information about their environment (e.g. trajec-
tories) that are easy to handle in SMC systems. It is an interesting research
question, not yet tackled, to consider how to package or give access to the rather
large range of capabilities of SMC systems for the relatively small blocks of
software that constitute agents. Existing work on the kinds of modelling that
agents will need to carry out suggests, further, that some mathematical struc-
tures and knowledge that are not normally present in SMC systems are required.
In particular, there are approaches that rely on graphs [30] and graph theory.
Further, models about agent behaviour, which could usefully be made available
to the agents themselves, often start from ideas involving queues [31], loads on
resources, and queueing theory.

Transforming Logic into Algebra

In any substantial system that holds and uses mathematical knowledge, both
”computer algebra” (the area of the most traditional SMC systems) and logic
have a place. There are topics, e.g. making and annotating proofs of theorems,
where a logic component is irreplaceable. However, computations based on logics



are usually quite slow, and expensive in storage, at least by comparison with the
performance of computer algebra systems. More than once, we have heard com-
ments of the form ”If only my program for deduction/induction/abduction/etc.
could run as efficiently as REDUCE/Mathematica/Maple/etc.”. Therefore, if a
problem initially posed in a logical formalism could be transformed into a prob-
lem suitable for such a system, it would bring computational benefits, as well
as extending our stock of mathematical knowledge. We have made that point
already in [1].

In that paper, we referred to examples of problems transformed in this way,
for theorem-proving in geometry [32], reasoning about the solution of certain
transcendental equations [33], and cylindrical algebraic decomposition [34] as a
means of either exploring the satisfiability of systems of equations, inequalities
and inequations [35] or (in its original guise) solving the quantifier-elimination
problem of Tarski. The use of integer programming to solve certain transformed
problems of deduction [36] is another example. Tt is still desirable to search for
new topics where a transformation from logic to some mathematical form that
traditional SMC systems can process efficiently, and to expand existing results.
The area where the greatest amount of activity and progress has been occurring
is geometrical theorem-proving, as evidenced by papers by Rege and Canny [37]
and Wang [38].

Machine Learning

Machine learning is a wide field whose techniques are accessible in many places
(e.g. [39]). Here we concentrate on a rather simple part of the subject, which
has been known for some time but which has only attracted occasional SMC
research-level attention. It deserves much more.

Typically, the generalisations that are the outputs of machine-learning meth-
ods are generated and expressed in a logic-based notation. An early example of
such activity in a field highly relevant to SMC, the AM project [40], has been
famous in its time, but also controversial [41]. In general, AM-style automated
discovery of interesting terms, conjectures etc. in mathematics is a difficult job.
As we have said above, certain difficulties (inefficiencies) in logic-based com-
putations can be reduced or removed if one manages to transform them into
something - informally, ”algebraic” - that fits better what traditional SMC sys-
tems can handle.

The particular aspect of learning that we emphasise starts from algebraic
information; no logical expressions or related theorem-proving steps are needed.
The simplest example that we have met involves counting the number of terms
in each of the first several members of a one-parameter family of functions (e.g.
functions occurring in exact or approximate solutions of equations in mathe-
matical physics), after generating these members by SMC, and then searching
for symbolic expressions that reproduce the numbers of terms when values for
the parameter are substituted into them. If there are regularities, it is possible
that these follow from some properties of the functions that can be exploited in
design of specialised compact data structures and methods for computing higher



members of the family of functions. There have been situations where users have
asked for those members to be computed but where the more general and there-
fore loose data structures maintained by SMC systems have made it impossible
for the systems to finish their computations before running out of space: hence
the need to find special ways of reducing the demand on memory.

In the same general area of inferring symbolic mathematical regularities,
there have been several programs such as BACON [42] for (re)discovery of equa-
tions of physics, e.g. Kepler’s Law, from sets of data, and an example [43] of
finding candidate solutions of some integral equations in mathematical physics
by a similar process plus the use of dimensional analysis to control the search
for candidates. Correct solutions were then identified by substitution into the
equations, and simplification. More recent work following from the former refer-
ence has now led to additional results, and a more general outlook, on ”scientific
discovery” [44]. Particular instances have involved searches for new invariants:
quantities that remain the same before and after reactions that are observed
to occur, but that would be different between the ”before” and the ”after” of
reactions that are not observed in experimental data. In high-energy particle
physics, these quantities are scalars, and the two forms of data are expressed
by linear equations and inequations respectively. Both Kocabas [45] and Valdes-
Perez [46] have written programs to suggest conserved quantities in this way.
Their results are not always the same: the program PAULI [46] searches for re-
sults that involve the smallest possible number of new invariants, while BR-3
[45] suggests invariants that are more often rediscovered copies of quantities (e.g.
baryon number, lepton number) that physicists have proposed and used already.
Valdes-Perez makes several suggestions, related to the nature of investigation
and discovery in science, about reconciliation of the different results. None is
conclusive, and some give openings for further research on methods and heuris-
tics (e.g. for partitioning the sets of data before the main part of the search for
invariants occurs) that can be added to the knowledge base for any SMC system
that may be used for similar explorations of machine learning in the future.

Because the precise focus of this kind of computation is better adapted to
computer algebra systems than many logic-based learning computations, it is
surprising that there has been almost no apparent contact between its specialists
and SMC. This is clearly an area that deserves more attention.

Qualitative Reasoning

When this subject emerged in Al it had the name ”naive physics” [47]. The
original goal was to identify the terms and reasoning methods that people use
to make their own practical models of physical phenomena. It was expected that
these models would not resemble the logical formulations made by Al specialists
for ”planning” programs or the equations that are taught to students of applied
mathematics and physics. Nevertheless, the practical models must have some
form of consistency (perhaps weak) and relevance, because the people who use
them to cope with the real world seem to survive and avoid injury quite well.



After a short time, the emphasis in Al shifted towards something non-naive
but more relevant to SMC: the use of physicists’ and mathematicians’ equations,
where the variables were ”qualitative” (e.g. drawn from the set +,0,-) rather than
of integer or real type. Quite substantial schemes of interpretation and of qual-
itative calculi (e.g. [48]) were developed on this foundation. The manipulations
involved were well suited to SMC, although researchers in qualitative reasoning
tended to write their own modules for symbolic manipulation rather than calling
on SMC systems to make use of the calculi.

The ”pure” version of this trend has now moved into the background, mainly
because the qualitative computations were more expensive than working with
the original equations in terms of integer and real variables. The foreground of
qualitative reasoning is occupied by the study of choices and of the activity of
modelling in design, particularly engineering design. Thus, for example, diag-
nosis of faulty operation does not wait for a device to be built and to become
defective, but a design is inspected diagnostically to identify possible faults in
advance of construction [49]. Struss [50] gives further details of the present state
of qualitative reasoning.

Given the change of emphasis in the subject, as we observed in [1], an auto-
mated qualitative reasoner should be able to handle not only traditional com-
puter algebra but also knowledge about design, in any of the standard knowledge
representations of Al. Knowledge that a designer normally draws in diagrams
or other forms that express kinematic and spatio-temporal information should
be permitted to fit easily into the resulting SMC systems, e.g. through access
to Prolog-like modules. We stated in [1] that a challenge for SMC research is to
integrate modules of this kind with modules for traditional computer algebra.
That challenge remains at present.

The topic of spatio-temporal reasoning was discussed in [1] under a sepa-
rate heading, with the suggestion that 1t was potentially fruitful for research.
A more recent development in qualitative reasoning has been the active use of
its methods and concepts to treat just that topic. A recent survey by Cohn [51]
gives information about achievements and about research questions that are still
open.

Constraint-Based Programming

Two types of constraints are common in mathematical knowledge-based compu-
tations and SMC. In SMC they are written as inequalities, as in [23]. Whenever
mathematical knowledge is put into in a representation such as Horn-clause logic
and can then be treated as a program in a suitable language, e.g. Prolog, it is
usually reasonable to describe the operation of the program as constraint-based
computing. Instantiations for uninstantiated variables are tried until one or more
make all the logical assertions of the relevant part of program true. The con-
straint is that an instantiation must make them true in order to be acceptable.

Although these two kinds of constraint go naturally together, e.g. in allowing
automated reasoning about exercises in linear programming and optimisation,



they have not yet led to many SMC environments in which the two are inte-
grated. The best-known example is the programming language Prolog IIT [52].
Rueher [53] gives examples of its use. Bouhineau [54] has recently discussed
further examples that are more directly concerned with SMC: geometric con-
straint problems; in terms of the algebraic forms described by Chou [32], and
”constructible numbers”.

A system that accepts both kinds of constraint, and which can also deal with
the consequences of overdetermined collections of equations and inequalities,
is UniCalc [55]. This system apparently does not have an explicit Prolog-like
component, but can use some kinds of information that would be appropriate
for such a component, if the user presents them in a way that fits UniCalc’s
internal notation.

Apart from the approach represented by Prolog III, CLP(R) [56] and Uni-
Calc, there are explicitly ”constraint-based” programming languages [57] [58].
We have not seen any use of those languages specifically for applications of SMC
interest, but it would be of some interest to investigate their capabilities and
any lessons that they might offer for builders and users of SMC systems.

The examples quoted above have close connections to optimisation. A more
general meaning of ” constraint” is: any condition that restricts the set of possible
solutions of a problem because some candidate solutions may fail to respect it. A
good example of work that starts from this observation is by Ladkin and Reine-
feld [59]. Although primarily theoretical, it makes the implicit point that avail-
ability of SMC systems embodying good mathematical knowledge-representation
facilities can help future studies in similar areas by providing a laboratory in
which exercises on the design and testing of algorithms and heuristics can be
carried out.

Environments for Manipulation of Mathematical Knowledge

Systems for the expression and use of mathematical knowledge (most often
in the notation of predicate calculus) and SMC systems (largely algorithmic,
though sometimes with the capability of accepting rules that modify their con-
trol regimes) have grown up in parallel, without much contact. The earliest
gestures from each side towards the other have added features of the other type
that were rather rudimentary by comparison with the state of the art in the
other field. CAMELIA [14] and PRESS [33] are examples taken from the two
different sides.

Because of the strengthening of contacts between Al and SMC, software sys-
tems that can accommodate the two types of material are developing in the
direction of increased integration, with more of a balance between the types.
Three examples, in what appears to an increasing order of integration, are Oys-
ter, which has been used for constraint-based program optimisation with the
help of proof plans [60], APS [61], for solving school-level algebraic problems,
e.g. to help in the teaching of mathematics, and MANTRA [19] [62], which aims
to integrate explicitly components for reasoning, mathematical knowledge repre-
sentation, and computer algebra. To date, published reports of progress on such



projects indicate that they are at experimental or prototype stages; hence there
is scope for further work on design of such systems and, equally important, the
collection and representation of larger bodies of mathematical knowledge, in-
cluding the heuristic problem-solving knowledge of practising mathematicians.
We expect these topics to be much in evidence in the Al and SMC media in the
near future.

Outlook

The intersection of Al and SMC has been in a constant state of expansion since
1992, after initial close contacts up to about 1970 followed by a period of sepa-
ration and perhaps near-divorce. The separation started when SMC, which had
had a large heuristic component in its early days, turned into a mainly algo-
rithmic subject. While it is true that other topics that were once regarded as
part of Al have disappeared from the AI perspective as their heuristics have
been replaced by algorithms, SMC is now mature enough that we can see a
more complex picture. For example, it is appreciated that heuristic knowledge
about how to apply the algorithmic techniques of SMC increases the flexibility
and the scope of SMC systems, and that the combination of the two approaches
has value both for SMC researchers and for users. There are many intellectually
challenging questions for the former, on the way to the production of more pow-
erful systems that embody mathematical knowledge. For the users there is the
prospect that the phenomenon of pen-and-paper mathematical manipulations to
put problems into forms that SMC systems can accept as input will shrink or
even disappear. After all, some of the earliest SMC systems were built to take
this chore (which then preceded the writing or running of Fortran programs)
away from the computer user. This original motivation is still useful as a spur
to further research in Al and SMC.
We conclude by listing some issues that we expect to drive future research:

— Determination of the usefulness of each of the knowledge representations
that are available inside AI, with respect to the storage of mathematical
knowledge and its use in reasoning (which, for some representations, implies
the development of improved methods of reasoning)

— Construction of mathematical knowledge-based computing environments that
combine Al and SMC features more closely and in greater volumes than at
present;

— Re-use of algorithmic knowledge in such environments, e.g. by methods of
annotation of the algorithms, where the annotations describe the knowledge
held in the algorithms, and how and where it 1s appropriate for the algorithms
to be used;

— Evaluation of the respective roles of formal (e.g. based on logics and/or typ-
ing) and informal (e.g. case-based and analogical) mathematical knowledge
and reasoning, and incorporation of both approaches inside knowledge-based
computing environments;



Examination of the behaviour of environments containing significantly larger
bodies of mathematical knowledge than are represented in such environments
at present - in particular, larger bodies of case-like or plan-like heuristic
knowledge about mathematical problem-solving;

Specific focusing on the activity and the associated knowledge of mathemat-
ical modelling;

Representation and use of mathematical material that is often required in
modelling but that has not yet received much attention in SMC: particularly
graphs and graph theory, and the mathematics appropriate to queueing the-
ory and to the distribution and loading of resources;

Investigation of the mathematical knowledge that will be most useful for
incorporation in autonomous agents in multi-agent systems;

Adaptation of the mathematical knowledge-based environments that have
been discussed above (and possibly the development of purpose-built new
ones) for the teaching of mathematics.
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