
Submission (December 18, 1997) to 'Empirical Software Engineering'

Two Controlled Experiments Assessing

the Usefulness of Design Pattern Information
During Program Maintenance

Lutz Prechelt, Barbara Unger, Michael Philippsen, Walter Tichy

Universit�at Karlsruhe, Fakult�at f�ur Informatik

(Received ; Accepted in �nal form)

Abstract. This paper reports on two controlled and repeatable experiments inves-
tigating whether software design patterns improve software quality and programmer
productivity during software maintenance.

Subjects performed maintenance tasks on two programs ranging from 360 to 560
LOC including comments. Both programs contained design patterns. The controlled
variable was whether the design patterns were documented or not. The experiments
thus tested whether pattern documentation helps during maintenance, provided pat-
terns are present.

The experiment was initially performed with 74 graduate students at the Uni-
versity of Karlsruhe, Germany, with programs written in Java. The experiment was
repeated with 22 undergraduate students at Washington University in St. Louis,
USA, with the programs rewritten in C++.

A conservative analysis of the results supports the hypothesis that pattern-
relevant maintenance tasks are completed faster and with fewer errors if pattern
documentation is provided. The results also suggest that the positive e�ects of pat-
tern documentation do not rely on a particular programming language and back-
ground.

Key words: controlled experiment, design pattern, documentation, maintenance

1. Introduction

One of the most di�cult tasks in software engineering is �nding a good

design and then working according to it. Software design patterns are

thought to help in this situation. A software design pattern describes

a proven solution to a software design problem with the goal of mak-

ing the solution reusable. One might say that design patterns are to

programming-in-the-large what algorithms are to programming-in-the-

small: Both provide proven solutions to known problems, encouraging

reuse and relieving programmers of reinvention.

The idea of design patterns has quickly caught the attention of prac-

titioners and researchers, and the pattern literature is burgeoning. The

�rst systematic collection of design patterns was published by Gamma,

Helms, Johnson, and Vlissides (GHJV95) (nicknamed the \Gang of

Four Book"). Shortly thereafter, additional patterns were reported by

2 L. PRECHELT ET AL.

Buschmann et al. (BMR
+
96). The book by Garlan and Shaw (SG96)

also provides a wealth of patterns for software architecture. Annual

workshops are being held (Sch97) to promote pattern mining and a

consistent style of reporting patterns. Pattern papers show up in other

software conferences as well, reporting on new patterns, pattern tax-

onomies, and pattern tools. Formalizations of patterns are sought and

tools are being built for pattern mining, matching known patterns in

existing software, and programming with patterns.

The main advantages claimed for design patterns, according to the

pattern literature, are as follows:

1. Using patterns improves programmer productivity and program

quality;

2. Novices can greatly increase their design skills by studying and

applying design patterns;

3. Patterns encourage best practices even for experienced designers;

4. Design patterns improve communication, both among developers

and from developers to maintainers.

1.1. Our experiments

The experiments reported here represent the �rst attempts at testing in

a repeatable and controlled manner claim 1 above.
1
The experiments

are set in a maintenance context. Assume a maintainer knows what

design patterns are and how they are used. Furthermore, assume that

a program was designed and implemented using patterns. Now the

question is:

Does it help the maintainer if the design patterns in the program

code are documented explicitly , as opposed to a documented pro-

gram structure without reference to design patterns.

We investigate this question in the following manner: Several sub-

jects receive the same program source code and the same change

requests for that program; they have to provide appropriate changes

sketched on paper (�rst experiment) or as operational program code

(second experiment). The change requests concern those aspects of the

program that are implemented using design patterns. The program

is documented in detail but the subjects in the control group receive

no explicit information about design patterns in the program, where-

as the experiment group receive the program with the design patterns

explicitly marked and named in a small number of additional comments

ese.tex; 18/12/1997; 12:52; no v.; p.2

USEFULNESS OF DESIGN PATTERN DOCUMENTATION 3

(called pattern documentation or PD). Subjects are assigned randomly

to the groups. We investigate whether and how the performance of the

two groups di�ers by measuring completion time, grading answers, and

counting correct solutions.

The experiments were performed with a total of 96 student subjects,

each working in a single session of 2 to 4 hours. The tasks were based

on two programs about 6 to 10 printed pages in length.

1.2. Related work

Design patterns are a recent idea, so it is not surprising that evidence

about their e�ectiveness is scarce. Case study reports and anecdotal

evidence of positive e�ects can be found in (BCC
+
96; GHJV95). Part

of the program maintenance literature is loosely relevant to pattern

e�ectiveness, but we have found no reports that speci�cally address

design patterns as an aid to maintenance. Likewise, as far as we know,

the design pattern community itself has not yet undertaken controlled

experiments to test design pattern claims.

1.3. Structure of the article

The next section will describe the design and implementation of the

experiments including a statement of the hypotheses, a description of

the subjects' background, a description of the tasks, and a discussion of

possible threats to the internal and external validity of the experiments.

Section 3 discusses the results and Section 4 summarizes the results and

raises questions for future research.

Due to space restrictions, we cannot provide a complete description

of the programs and tasks used. However, detailed information is avail-

able in two technical reports (Pre97; PUS97) that include the original

experiment materials such as the task descriptions and source program

listings.

2. Description of the experiments

The �rst experiment was performed in January 1997 at the University

of Karlsruhe (Uka), the second in May 1997 at Washington University

St. Louis (Wustl). Although the experiments were similar, there were

some variations. We will therefore describe the experiments separately

and refer to them asUka andWustl, respectively. Where appropriate,

we will give information for Uka �rst and append the corresponding

information for Wustl in angle parentheses hlike thisi.

ese.tex; 18/12/1997; 12:52; no v.; p.3

4 L. PRECHELT ET AL.

2.1. Hypotheses

First we need to de�ne the concept of pattern-relevance. A maintenance

task on a program is pattern-relevant if (1) the program contains one

or more software design patterns and (2) a grasp of the patterns in the

program is expected to simplify the maintenance task.

The experiments aimed at testing the following hypotheses:

Hypothesis H1: With PD, pattern-relevant maintenance tasks are

completed faster than without.

Hypothesis H2: With PD, fewer errors are committed in pattern-

relevant maintenance tasks than without.

Speed of task completion is measured in time (minutes). The number

of errors are quanti�ed by assigning points and by counting correct

solutions.

2.2. Subjects and environment

The 74 h22i subjects of the Uka hWustli experiment were 64 h0i
graduate and 10 h22i undergraduate computer science students.

They had taken a 6-week h12-weeki intensive hstandardi lecture and
lab course on Java hC++i and design patterns before the experiment.

On average, their previous programming experience was 7.5 years h5
yearsi using 4.6 h4.0i di�erent languages with a largest program of

3510 LOC h2557 LOCi. Before the course, 69% h76%i of the subjects
had previous experience with object-oriented programming, 58% h50%i
with programming GUIs.

The subjects had su�cient theoretical knowledge of design patterns,

as indicated by a pattern knowledge test conducted at the start of

each experiment. For those patterns that were relevant in the exper-

iment, the Uka subjects' pattern knowledge was better than that of

the Wustl subjects, because the Uka course had directly been tar-

geted at the experiment but the Wustl course had not. For some of

the relevant patterns, the Wustl subjects had no practical experience

with these patterns, in contrast to the Uka subjects.

Each of the experiments was performed in a single session of 2 to

4 hours. The Uka subjects had to write their solutions on paper. The

Wustl subjects implemented their solutions on Unix workstations.

2.3. Programs used

Each subject worked on two di�erent programs. Both programs were

written in Java hC++i using design patterns and were thoroughly com-

mented.

ese.tex; 18/12/1997; 12:52; no v.; p.4

USEFULNESS OF DESIGN PATTERN DOCUMENTATION 5

Program And/Or-tree is a library for handling And/Or-trees of

strings and a simple application of it. It has 362 h498i LOC in 7 h6i
classes; 133 h178i of these LOC contain only comments, and an addi-

tional 18 h22i lines of PD were added in the version with PD. And/Or-
tree uses the Composite and the Visitor design pattern (GHJV95).

Program Phonebook is a GUI program for reading tuples (name,

�rst name, phone number) entered by the user and showing them in

di�erent views on the screen, see the screenshot in Figure 1. Because the

Wustl subjects had not learned a GUI library in the course, the C++

version of Phonebook is stream-I/O-based: it reads all of its inputs from
the keyboard and completely redisplays all views to standard output

after each change. Phonebook has 565 h448i LOC in 11 h6i classes; 197
h145i of these LOC contain only comments, and an additional 14 h10i
lines of PD were added in the version with PD. Phonebook uses the

Observer and the Template Method design pattern (GHJV95).

See (Pre97; PUS97) for the full source code of the programs.

Figure 1. Screenshot of Uka Phonebook program

2.4. Experiment controls, group sizes

The independent variable in both experiments was the presence or

absence of design pattern documentation (PD) as comments in the

source programs.

We used a counterbalanced experiment design (Chr94), see Table I:

The �rst variable is the order in which a subject receives the two pro-

grams. One of those programs was supplied with PD, the other without.

This design results in a second variable, i.e., the order in which PD is

received: �rst with, then without PD, and vice versa. The combination

of the variables results in four groups. The subjects did not know in

ese.tex; 18/12/1997; 12:52; no v.; p.5

6 L. PRECHELT ET AL.

Table I. The four experiment groups and their size. The number of data points
is one per subject, except for those subjects that did not complete the respective
task, but dropped out of the experiment instead. For Uka there was no such
mortality. See also Section 2.7. (A+P� stands for \�rst perform And/Or-tree
with PD, then perform Phonebook without PD" and so on.)

�rst with PD �rst w/o PD

then w/o PD then with PD

groups: �rst And/Or-tree, then Phonebook A+P� A�P+

|Uka initial no. of subjects 19 18

|Uka no. of data points, both tasks 19 18

|Wustl initial no. of subjects 6 5

|Wustl no. of data points, Phonebook 4 3

|Wustl no. of data points, And/Or-tree 4 4

groups: �rst Phonebook, then And/Or-tree P+A� P�A+

|Uka initial no. of subjects 18 19

|Uka no. of data points, both tasks 18 19

|Wustl initial no. of subjects 6 5

|Wustl no. of data points, Phonebook 3 3

|Wustl no. of data points, And/Or-tree 4 4

advance whether a program would contain PD or not; they did not

even know that PD would be a treatment variable.

2.5. Tasks

For And/Or-tree, each subject received the following 4 subtasks:

(1) Find the right spot for a particular output format change, (2) give

an expression to compute the number of variants represented by a tree,

(3) create an additional visitor class that computes the number of vari-

ants faster (similar to an already existing class computing depth infor-

mation), and (4) instantiate such a visitor and print its result. Subtasks

(3) and (4) are considered pattern-relevant.

For Phonebook, each Uka subject received the following 5 sub-

tasks: (1,2) Find two spots for small program changes (output format

change, window size change), (3) create an additional observer class

using a Template Method,
2
(4) instantiate and register such an observ-

er, (5) create an additional observer class similar to an already existing

ese.tex; 18/12/1997; 12:52; no v.; p.6

USEFULNESS OF DESIGN PATTERN DOCUMENTATION 7

one not using a Template Method. Subtasks (3) to (5) are considered

pattern-relevant.

There are two important di�erences between Uka and Wustl

regarding Phonebook. First, in Uka subtask (3) a similar class was

already present in the program. Subtask (3) could thus be solved by

imitation; this was not true for Wustl. Second, subtasks (2) and (5)

were not required in Wustl and (4) was implicit in (3).

For the class creation subtasks, only the interface of the class needed

to be written; the actual implementation was not required, although

the Wustl participants were asked to provide a complete solution if

they easily could.

2.6. Measurements

For each task (but not for each subtask) of each subject we measured

the time between handing out and collecting the experiment mate-

rials. It is unclear how the time spent for general program under-

standing could be distributed among the subtasks, so no subtask time

information was collected. For each subtask, we graded the answers

according to the degree of requirements ful�llment they provided. The

grades were expressed in points. There was a total of 2+2+8+3=15

points h2+2+8=12i for the Uka hWustli subtasks of And/Or-tree
and 2+3+8+4+6=23 points h2+8+8=18 pointsi for those of Phone-
book. Since graded point scales are somewhat subjective we also record-
ed the number of completely correct solutions.

2.7. Threats to internal validity

The main independent variable in these experiments is the presence or

absence of pattern documentation (PD). Unavoidably, though, adding

or removing PD also changes the amount of overall documentation in

the program, because there is no appropriate placebo that could be used

in its place. Hence, it is impossible to distinguish between the e�ects

of adding PD (as such) and the e�ects of adding some documentation

(of whatever kind). One can think of two possibilities for the latter:

First, adding documentation may improve performance, because the

program is described better. Second, adding documentation may also

hamper performance, because more documentation takes more time

to digest and may increase the cognitive load or introduce additional

stress.

No matter which e�ect is dominant, it has not in
uenced our results

much, because our programs were thoroughly documented even with-

out PD and the amount of additional documentation was quite small

ese.tex; 18/12/1997; 12:52; no v.; p.7

8 L. PRECHELT ET AL.

(between 2% and 5% of all source lines). Therefore we can expect our

results to show e�ects from adding PD, not e�ects from adding any

documentation.

Apart from the above, all relevant external variables have been

appropriately controlled in this experiment; furthermore, the counter-

balanced experiment design would even (partially) compensate for

unbalanced subject ability between the groups, should it have occurred

by chance.

The dominant control problem is mortality: Some Wustl students

gave up on a task when they thought it would be too di�cult for them

or take too long. Four students gave up on both tasks. Fortunately,

mortality occurred almost exactly as often in the groups with PD as in

those without PD. By ignoring incomplete tasks entirely, it is therefore

safe to assume that the mortality does not bias the results. See Table I

for the resulting group sizes; there was no mortality in Uka.

We applied manual and automated consistency checks for guarding

against mistakes in data gathering and processing.

2.8. Threats to external validity

There are several sources of di�erences between the experimental and

real software maintenance situations that limit the generalizability

(external validity) of the experiments: in real situations there are sub-

jects with more experience, often working in teams, and there are pro-

grams and change tasks of di�erent size or structure.

Experience: The most frequent concern with experiments using

student subjects is that the results cannot be generalized to profes-

sionals, because the latter are more experienced. In the present case,

professional programmers may have less need for PD because of their

experience. But just as well they may be able to exploit it more prof-

itably than our student subjects.

Team work: Realistic programs are always team work. Individual

change tasks during maintenance may also often be performed by more

than one programmer. Such cooperation requires additional communi-

cation about the program. In this case PD may have further advan-

tages, not visible in the experiment, because one of the major (pur-

ported) advantages of design patterns is to provide adequate common

terminology.

Program size and structure: Compared to typical industrial size

programs, the experiment programs are rather small and simple. This

property does not necessarily invalidate the results of the experiments,

though. If a positive e�ect is found, it is plausible that increasing pro-

gram complexity magni�es the e�ect, because PD provides program

ese.tex; 18/12/1997; 12:52; no v.; p.8

USEFULNESS OF DESIGN PATTERN DOCUMENTATION 9

slicing information. For pattern-relevant tasks, PD points out which

parts of a program are relevant and enables one to ignore the rest; such

information becomes more useful as more code can be ignored.

Change tasks and pattern relevance: The bene�ts from PD may

be smaller in reality than in our experiment for two reasons, but the

exact e�ects are quite unclear and may depend on the domain. First,

if the programmer must understand a large number of design patterns,

his/her understanding of each individual pattern may be reduced or

confused and therefore less helpful. Second, for many change tasks,

design patterns may not be relevant at all.
3

Only repetition of similar experiments with professionals on real

programs and real maintenance tasks can evaluate these threats. On

the other hand, the experiment was biased in several ways towards

showing smaller-than-reality bene�ts from PD; see the discussion in

the conclusion. Note in particular that knowing and using more design

patterns overall increases the e�ective pattern density in a program

and increases the amount of information that PD can provide.

3. Results and discussion

The most salient results of both experiments are summarized in

Tables II and III. A part of the results is also visualized in Figure 2.

For Wustl, the results of subjects that did not deliver a particular

task were ignored for that task. For Uka, all subjects delivered both

tasks.

3.1. Results for And/Or-tree

From Table II the Uka results for And/Or-tree at �rst appear to be

inconclusive: While the A+ group (i.e., the group with PD) obtained

slightly more points on average (lines 1 and 2), it consumed signi�cantly

more time (line 4). However, this observation is misleading, because the

non-computerized working environment made it di�cult for a subject

to check whether a solution was correct. In real software maintenance,

incorrect solutions would be detected and corrected, taking additional

time not observed in the experiment. In the Uka experiment, incorrect

`solutions' are produced quickly.

It turns out that most such quick but incorrect solutions occur in the

A� group: Subtask (3) was solved correctly by 15 subjects of the A+

group with PD, but only by 7 of the A� group without PD (line 3). This

di�erence is signi�cant (�2 = 3:55, p = 0:060, Fisher exact p = 0:051).

If we consider only the correct solutions the time di�erence vanishes

ese.tex; 18/12/1997; 12:52; no v.; p.9

10 L. PRECHELT ET AL.

Table II. Results for the And/Or-tree task. Columns are (from left to right):
line number, name of variable, arithmetic average PD+ of sample of subjects
provided with design pattern information (PD), ditto without, 90% con�dence
interval I for di�erence A+

�A� (measured in percent of A�) or P+
�P�,

signi�cance p of the di�erence (one-sided). I and p were computed using
Bootstrap resampling (ET93) with 10000 trials because many distributions
were distinctly non-normal. \Relevant points" are the points for the pattern-
relevant subtasks only.

mean means di�erence signi�-

with PD w/o PD (90% con�d.) cance

Variable I p

Uka, program And/Or-tree:

1 all points 11.1 10.4 �8:2% : : : + 22% 0.23

2 relevant points 8.5 7.8 �7:7% : : : + 23% 0.20

3 #corr. solutions 15 of 38 7 of 36

4 time (minutes) 58.0 52.2 �3:0% : : : + 24% 0.094

5 | corr. 52.3 45.4 �11% : : :+ 41% 0.17

6 | best 7 38.6 45.4 �37% : : :+ 6:3% 0.13

Wustl, program And/Or-tree:

7 all points 9.8 10.0 �18% : : :+ 13% 0.48

8 relevant points 6.7 6.5 �12% : : :+ 19% 0.28

9 #corr. solutions 4 of 8 3 of 8

10 time (minutes) 52.1 67.5 �43% : : :� 0:5% 0.046

(line 5). Moreover, to remove bias we must compare only the fastest

7 subjects of each group with correct solutions. In this case the time

di�erence reverses and the A+ group is faster (line 6). See also Figure 2.

Thus, it is safe to say that although the advantage of having PD is

blurred due to the conditions of the experiments, it is still visible: Far

more subjects with PD were able to come up with completely correct

solutions than without and also tend to be faster then.

The Wustl results for And/Or-tree are even clearer: Here we �nd

essentially no di�erence in the number of points (lines 7 and 8) or the

number of completely correct solutions (line 9), but a large advantage

in the time required for the group with PD (line 10). With a con�dence

of 0.9, PD saved between zero and 43 percent of the maintenance time

for this task.

As for learning e�ect, the Uka subjects were on average signi�cantly

faster (but did not obtain more points) in their second task. The accel-

eration hardly interacts with the presence of PD. The learning e�ect is

compensated by the counterbalanced design and is not relevant for the

interpretation of the results. The learning e�ect could not be assessed

for Wustl, because the group sizes were too small.

ese.tex; 18/12/1997; 12:52; no v.; p.10

USEFULNESS OF DESIGN PATTERN DOCUMENTATION 11

0
20

40
60

80
10

0

UKA UKA UKA WUSTL UKA WUSTL

And/Or Phonebook

time corr. only best 7 time time time
line 4 line 5 line 6 line 10 line 14 line 18

Figure 2. Graphical display of time entries (in minutes) from Tables II and III: The
left plot of each pair represents the group with PD, the right one the group without
PD. The dot marks the mean of the task completion time, the strip indicates a 90%
con�dence interval for the mean. \line n" indicates the corresponding line in Table II
or III.

Table III. Results for the Phonebook task.

mean means di�erence signi�-

with PD w/o PD (90% con�d.) cance

Variable A+ or P+ A� or P� I p

Uka, program Phonebook:

11 all points 20.8 21.1 �6:0% : : :+ 3:3% 0.35

12 relevant points 16.1 16.3 �8:0% : : :+ 4:0% 0.35

13 #corr. solutions 17 of 36 15 of 38

14 time (minutes) 51.5 57.9 �22% : : : + 0:3% 0.055

Wustl, program Phonebook:

15 all points 12.3 14.2 �33% : : : 5:6% 0.12

16 relevant points 10.5 12.2 �38% : : : 8:5% 0.15

17 #corr. solutions 1 of 6 1 of 7

18 time (minutes) 64.1 62.7 �23% : : : 29% 0.45

3.2. Results for Phonebook

For Phonebook, the results (as shown in Table III and Figure 2) are

clear for Uka, but blurred by experiment artifacts for Wustl.

The Phonebook results of Uka show essentially no di�erence in the

total number of points per subject (line 11), the number of points for the

ese.tex; 18/12/1997; 12:52; no v.; p.11

12 L. PRECHELT ET AL.

pattern-relevant subtasks 3 to 5 (line 12), or the number of solutions

that were completely correct for pattern-relevant subtasks (line 13).

The rather high average point values obtained indicate that the task

was simple for these subjects.

Still, however, the group with PD managed to solve the task signif-

icantly faster than the group without PD (line 14). The advantage can

also be quanti�ed: it has an expected size somewhere between zero and

22 percent with con�dence 0.9. See also Figure 2.

The Wustl results for Phonebook are completely inconclusive:

Quantitatively, the times for the two groups are essentially the same

(line 18) and the PD group obtained somewhat fewer points (lines 15

and 16). Qualitatively, however, it is clear that these results are not

meaningful, because there is only a single correct solution (line 17)! Our

interpretation is that the task was just too di�cult for these subjects

for two reasons. First, the non-GUI presentation style of the Wustl

Phonebook program made the use of the Observer pattern rather unin-

tuitive and obscure. Second, these subjects had never actually imple-

mented an Observer and there was no example class they could imitate

(as the Uka group could). Our results suggest that under such circum-

stances, PD might be worthless. Obviously, the results for the Uka and

Wustl variants of the Phonebook task must not be compared directly.

As for learning e�ect, the same discussion applies as for And/Or-tree
above; see (Pre97) for details.

4. Interpretation and conclusions

We will argue now why the results from our experiments suggest posi-

tive e�ects of PD in pattern-relevant maintenance tasks.

The design of these experiments was extremely conservative; many

design decisions biased them towards not showing any e�ects from

adding PD:

1. The subjects knew they would participate in an experiment \about

design patterns", so they were keyed to look for patterns in the

programs. Such a context may reduce the bene�ts from PD.

2. In software production reality, a software engineer might know a

lot more di�erent patterns, some of them quite similar to each

other, so that any single PD would transport more information.

3. The programs were rather small, so even without PD the subjects

could achieve good program understanding within a reasonable

time. Again, in reality PD might be more helpful if the fraction

of program understanding e�ort that PD can save grows with the

size of the program.

ese.tex; 18/12/1997; 12:52; no v.; p.12

USEFULNESS OF DESIGN PATTERN DOCUMENTATION 13

4. The programs were thoroughly commented, not only at the state-

ment level, but also at the method, class, and program levels. Thus,

the subjects had su�cient documentation available for program

understanding even without PD. In contrast, most programs in

the real world lack design documentation. PD might be a good

means to improve design documentation, as it is rather compact.

Given these circumstances, we expect performance advantages through

PD to be more pronounced in real situations than in our experiments.

In summary we �nd that our results support both of our hypotheses

introduced in Section 2.1:

Hypothesis H1 (Pattern-relevant maintenance tasks will be com-

pleted faster with PD): This hypothesis is clearly supported by theUka

Phonebook results and theWustl And/Or-tree results. The other two
results are inconclusive; however, the opposite of this hypothesis is not

supported at all. Where found, the size of the e�ect (0 to 40 percent

speedup) is considerable, although this is certainly not directly gener-

alizable to other circumstances.

Hypothesis H2 (Fewer errors will be committed in pattern-

relevant maintenance tasks with PD): This hypothesis is clearly sup-

ported by the Uka And/Or-tree results. The other three results are

inconclusive; however, the opposite of this hypothesis is not supported

at all, judging from the fraction of completely correct solutions, which

is the only reliable quality measure.

We conclude that depending on the particular program, change task,

and personnel, PD in a program may considerably reduce the time

required for a program change and may also help improve the quality

of the change. Given that we used subjects from two di�erent continents

and two di�erent programming languages, the results are not speci�c

to only one type of culture or educational background or to only one

programming language.

We therefore recommend that design patterns always be documented

explicitly in program source code.

Further work should perform related experiments in di�erent set-

tings. The following questions appear most important. First, how do

the e�ects change for larger programs? Second, how do they change for

more di�cult tasks? Third, how do the e�ects change when much larg-

er numbers of di�erent patterns come into play | often with overlap

between their instances? Fourth, how do they change when multiple

programmers have to cooperate (and hence communicate) in order to

make a change? Fifth, what are the e�ects if programs are more or less

undocumented (or even ill-documented) and how, in general, does PD

interact with other documentation? Sixth, is PD also helpful during

inspections?

ese.tex; 18/12/1997; 12:52; no v.; p.13

14 L. PRECHELT ET AL.

Moreover, empirical studies of existing software should determine

what fraction of the change tasks (or change e�ort) is pattern-relevant.

The question of design stability also needs to be addressed: We have

found initial evidence that PD may slow down architectural erosion

and drift (PW92), i.e., delay the decay of the original software design

structure. Finally, and perhaps most interestingly, how does mainte-

nance compare for software with patterns versus equivalent software

without?

Acknowledgements

We thank Douglas Schmidt for the opportunity to repeat the exper-

iment. We also thank all our experimental subjects for making this

exciting project possible.

Notes

1 The experiments also tests the fourth claim, but only indirectly.
2 Of course the task description did not explicitly mention that it was an observer

that should be added, etc.
3 An important question in this context is the pattern density in a program:

what fraction of the program is a part of a design pattern instance? Little such
information is available. An investigation of the Java Abstract Windowing Toolkit
(AWT 1.0) and NEXTstep v2 found that 74% and 66% of all classes, respectively,
participated in some design pattern instance (Gra97).

References

K. Beck, J.O. Coplien, R. Crocker, L. Dominick, G. Meszaros, F. Paulisch, and
J. Vlissides. Industrial experience with design patterns. In 18th Intl. Conf. on
Software Engineering, pages 103{114, Berlin, March 1996. IEEE CS press.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-Oriented Software Architecture | A System of Patterns. John
Wiley and Sons, Chichester, UK, 1996.

Larry B. Christensen. Experimental Methodology. Allyn and Bacon, Needham
Heights, MA, 6th edition, 1994.

Bradley Efron and Robert Tibshirani. An introduction to the Bootstrap. Monographs
on statistics and applied probability 57. Chapman and Hall, New York, London,
1993.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA,
1995.

Oliver Gramberg. Counting the use of software design patterns in Java AWT and
NeXTstep. Technical Report 19/1997, Fakult�at f�ur Informatik, Universit�at Karl-
sruhe, Germany, December 1997. to appear, ftp.ira.uka.de.

Lutz Prechelt. An experiment on the usefulness of design patterns: Detailed descrip-
tion and evaluation. Technical Report 9/1997, Fakult�at f�ur Informatik, Univer-
sit�at Karlsruhe, Germany, June 1997. ftp.ira.uka.de.

ese.tex; 18/12/1997; 12:52; no v.; p.14

USEFULNESS OF DESIGN PATTERN DOCUMENTATION 15

Lutz Prechelt, Barbara Unger, and Douglas Schmidt. Replication of the �rst con-
trolled experiment on the usefulness of design patterns: Detailed description and
evaluation. Technical Report wucs-97-34, Washington University, Dept. of CS,
St. Louis, December 1997.

Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software
architecture. ACM SIGSOFT Software Engineering Notes, 1992.

Douglas Schmidt. Collected papers from the PLoP '96 and EuroPLoP '96 confer-
ences. Technical Report wucs-97-07, Washington University, Dept. of CS, St.
Louis, February 1997. (Conference \Pattern languages of programs").

Mary Shaw and David Garlan. Software Architecture | Perspectives on an Emerg-
ing Discipline. Prentice Hall, 1996.

Address for correspondence:
Fakult�at f�ur Informatik, Universit�at Karlsruhe
D-76128 Karlsruhe, Germany
Phone: +49/721/608-4068, Fax: +49/721/608-7343
Email: prechelt,unger,phlipp,tichy@ira.uka.de
WWW: http://wwwipd.ira.uka.de/Tichy/

ese.tex; 18/12/1997; 12:52; no v.; p.15

