
Resource Bounded Next Value and Explanatory Identi�cation
Learning Automata, Patterns and Polynomials On-Line �

Susanne Kaufmann y

Universit�at Karlsruhe

Frank Stephan z

Universit�at Heidelberg

Abstract

This paper considers learning via predicting the next

value { this concept is also known as \on-line learning"

or \forecasting". The concept is combined with the lim-

ited memory model and has two variants: Exact NV-

learning has a polynomial resource bound depending on

the sizes of current input and the concept on long term

memory and on working space (or time); in addition the

number of errors is limited by a polynomial in the con-

cept size. Independent NV-learning has polynomial re-

source bounds depending on the size of the current input

only on long term memory and on working space (time).

The following is shown: A class of functions is indepen-

dently NV-learnable i� it is uniformly computable in

PSPACE. Exact NV-learning is a proper restriction of

independent NV-learning. For the well-known classes

of pattern languages, regular languages and polynomi-

als, it is investigated under which variations of the re-

source bounds they are learnable or not learnable. Also

an explanatory version of resource bounded learning is

de�ned. It is more powerful than next value learning.

Furthermore while next value learning is closed under

union, this type of explanatory learning has a proper

�This paper appeared in the Proceedings of the confer-
ence COLT 1997. The copyright of these proceedings is due
to the Association of Computing Machinery and due to their
policy the following note is given: Permission to copy with-
out fee all or part of this material is granted provided that
the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that
copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a
fee and/or speci�c permission.

yInteractive Systems Laboratories, Am Fasanengarten 5,
Universit�at Karlsruhe, 76128 Karlsruhe, Germany, electronic
mail hkaufmann@ira.uka.dei.

z Mathematisches Institut, Im Neuenheimer Feld 294,
Universit�at Heidelberg, 69120 Heidelberg, Germany, elec-
tronic mail hfstephan@math.uni-heidelberg.dei. Sup-
ported by the Deutsche Forschungsgemeinschaft (DFG)
grant Am 60/9-1.

team hierarchy which is the same as in the standard

case of explanatory learning without resource bounds.

1 Introduction

Inductive inference [3, 8, 12] means to learn functions

in the limit where the learner makes up the hypothe-

sis form larger and larger pre�xes f(0)f(1) : : : f(x) of

the function f . There are two basic concepts how to

make the conjecture. Either the learner predicts from

f(0)f(1) : : : f(x) the next value f(x+1) [4] or the learner

computes from this input a hypothesis ex [12] which is

intended to be a program for f . In both cases, the

learner is expected to be correct for almost all x. The

present work deals with resource bounded versions of

these two basic types of learning.

There are several approaches how to introduce resource

bounds to learning. All these approaches have to deal

with one di�culty which is connected with the data-

presentation: the machine might receive so many redun-

dant data, that the time to process all this input is much

higher than the computational complexity of the learn-

ing process. For example in the case of learning �nite

automata, it might be necessary to read 2n data-items

until a word is found on which two given automata with

n states are di�erent. The natural assumption that the

learner may use at least as much time for its learning

algorithm as for reading the input gives the learner the

ability to use an exponential time algorithm and so this

model makes it very di�cult to analyse subexponential

complexity of learning.

One way to overcome this problem arising from the

data distribution is Angluin's model of a teacher [2]: the

learner and the teacher communicate via a dialogue of

queries and answers and the learner has to succeed in

polynomial time measured relative to the problem size

and the answers of the teacher. Littlestone [17, 18] de-

signed a model of next value learning where the learner

receives the data in arbitrary order and has to make

on each sequence of data at most polynomially many

false predictions. In this community, the notion NV is

also called on-line learning or forecasting. Valiant [24]

considered randomly presented data and expected the

learner therefore only to succeed on most of the data

(where \most" is measured with respect to a given prob-

ability distribution) and in addition the learning process

is permitted to fail totally with a low probability. All

these approaches have in common that they modify the

mode to present the data to the learner.

Freivalds, Kinber and Smith [11] followed another direc-

tion. They did not change the mode of data presenta-

tion but restricted the ability of the learner to remember

previous data and computations. This approach can be

motivated from the behaviour of natural learners like

animals or humans: A human or animal is lifelong learn-

ing, that means during a long period processing each

day a new collection of data. But most of this data is

forgotten after processing it. For example, a 10 year old

child is not able to say what has happened 5 years + 3

month + 2 days + 5 hours ago. But the child remem-

bers a choice of important or impressive events in the

past and furthermore has a lot of skills and data derived

from the experience of the last 10 years. An other ex-

ample of such type of learning is reading a book: the

readers (or to be more exact: most of them) process

books by dealing with one page after the other so that

every page in the book is read once. Nevertheless they

do not memorize the whole text but keep in the brain

only some small relevant information on the book.

So the main idea is that the prime restriction dur-

ing this type of learning is not the time but the limited

memory of the learner. Freivalds, Kinber and Smith

[11] formalized this idea and obtained so an alternative

approach to introduce resource bounds in inductive in-

ference. The learner works in stages and processes in

each stage one current argument x plus the correspond-

ing value of f ; thereby the learner can obtain informa-

tion on the previous values only by that which is stored

in the long term memory. This memory is too small to

store all previous values, thus the management of the

long term memory is an important part of each learning

algorithm.

There is also some work in on-line learning keep-

ing the default ordering. Vovk [25] looked upon learn-

ers, which predict statistically always the next value

on an in�nite binary string. Vovk considered statis-

tical and deterministic learners, which try to predict

the next value. He put his accent on minimizing the

number of errors and showed that there is a universal

learner which is almost as powerful as any specialized

learner designed for a certain class of strings. His time

constraints are polynomial in the length of the string

f(0)f(1) : : : f(x � 1) and thus exponential in the size n

of x according the notion used in this paper.

In order to separate limitations of storage and com-

putation, Freivalds, Kinber and Smith [11] o�ered to

the learner an additional short term memory, which is

cleared before reading each new word of the input. So

the learner in stage x reads the argument x, the in-

formation f(x � 1) on the previous argument in order

to verify or disprove the last conjecture, modi�es the

long term memory and outputs an hypothesis { a pro-

gram for f in the case of explanatory learning, a guess

for f(x) in the case of next value learning. It is also

reasonable to consider a bound on computation time

instead of computation space: a natural example would

for this scenario is a tennis player who during a long

professional life collects the data how to play tennis but

in each match has to react rapidly in order to return the

upcoming ball. Nevertheless even during the game, the

player learns something on the game or the actual op-

ponent and so updates his strategy represented by the

long term memory.

Long term memory and computations have resource

bounds which depend polynomially on some parameters

among which the size n of x is the most important one.

Mathematically, the size of a number is just its loga-

rithm. Roughly spoken, the dual number 10011 has

the size 5 since it can be written using 5 digits (bits).

The other parameters are the maximal size o of some

previous seen value f(y) (y = 0; 1; : : : ; x � 1) and the

size m of the description (index) of the function to be

learned. In addition to the two original bounds on long

term memory and on working space (or time), a new

bound is introduced which limits in the case of exact

learning the number of false predictions. Now a formal

description of the learning process and in particular of

its resource bounds is presented.

� Long term memory: The learner predicts every

value f(x) using only the informations x, f(x � 1)

and the content of the long term memory which

was produced after predicting f(x � 1). The con-

tent of this long term memory is the only way for

the learner to retrieve information on the previous

values f(0); f(1); : : : ; f(x � 2). After making the

prediction, the learner updates the long term mem-

ory and thereby respects the space bound l(m;n)

for it.

� Computation time or space: The time or the space

to compute a prediction for f(x) is bounded by a

function t(m;n) or s(m;n), respectively.

� Number of errors: During the whole inference-pro-

cess of f , the number of false predictions should not

exceed some bound b(m) where m is the size of the

concept to be learned, that means the size of the

smallest index of f relative to a given enumeration.

There is an in
uence on the choice of the hypothesis

space since the parameter m depends on this choice.

Therefore two cases are distinguished:
2

� exact NV-learning: the parameter m is chosen with

respect to the given enumeration; m is the size (=

logarithm) of the smallest index of f in the given

enumeration.

� independent NV-learning: Here the learner has to

keep its bounds only for the long term memory

and the complexity of the computation of each next

value. Both resource bounds have to be indepen-

dent of m and depend only on n.

Many applications look only at f0; 1g-valued functions

so that the parameter o can just be ignored in these

cases. In the other cases each of the two de�nitions

above can be split into two versions: those where the

parameters depend only on n and not on o and those

where the size of the values of functions is taken into

account and each parameter n in the de�nitions above

is replaced by n + o. For certain classes like the class

of all integer valued polynomials, it makes a di�erence

whether n+ o or only n is considered as parameter for

the resource bounds.

Lange and Zeugmann [16, 26] studied the in
uence of

the space of hypotheses on learnability. They distin-

guish three types of learning: exact, class-preserving

and class-comprising. In the �rst case, the learner has

to output guesses using a given space of hypotheses,

in the second the learner takes the hypotheses from a

space which contains the same functions as the given

one and in the third case, the learner might use any su-

perclass. So it is natural to ask to which extent such

models can also be applied to NV-learning. An NV-

learner does not any longer output a hypothesis but the

next value. Thus the hypothesis space is less relevant as

in the case of explanatory learning. Exact NV-learning

still needs the space of hypotheses since the parameter

m depends on the size of the minimal index of the func-

tion to be learned. But independent learning is { as the

name already indicates { absolutely independent of the

space of hypotheses. That means an independent NV-

learner either ignores hypotheses or uses them only in-

ternally which might make an algorithmmore transpar-

ent. Class-preserving and class-comprising NV-learners

have the ability to blow up the indices: if they use gi0

instead of fi where gi0 = fi for i
0 = 2i; 2i+1; : : : ; 2i+1�1

then polynomially many errors in the size of the new in-

dex are exponentially many in the size of the old index.

This is of course not what is intended and therefore in

the �eld of resource bounded inference it is more suit-

able to consider only exact and independent learning

but not the class-preserving and class-comprising mod-

els which are similar (but not identical) to independent

learning.

In the present work only PSPACE-computable func-

tions are considered and every class S = ff0; f1; : : :g

has to be polynomial time m-reducible to the standard

acceptable numbering with clocks { this numbering is

given by the functions

'e;p(x) =

8><
>:
'e(x) if the computation terminates

without using more than

p(m + n) bits working space;

0 otherwise;

where p is a polynomial, m the size of the index e and

n the size of the input x. Note that there is still a dif-

ference between uniformly PSPACE-computable classes

of functions and the here introduced non-uniform enu-

meration of all PSPACE-computable functions.

2 Independent NV-Learning and

PSPACE

The main result of this chapter is, that a class of func-

tions is independently NV-learnable with polynomial

space bounds on computation and long term memory

i� it is uniformly in PSPACE. So this theorem is the

direct analogue to Barzdins' and Freivalds' [6] result

that a class of functions is NV-learnable (without re-

source bounds) i� it is contained in a uniformly recur-

sive class of functions [9, Theorem 2.21]. A similar result

for time bounded learners requires at least the unlikely

assumption that every function computable with sub-

linear space is also computable with polynomial time;

therefore only one direction from the result on space

transfers to that for time.

Theorem 2.1 A class S of f0; 1g-valued functions is

independently NV-learnable via a machine having poly-

nomial bounds on working space and long term memory

i� it is uniformly in PSPACE.

Proof Before starting the proof, the statement is made

more precise: The class S is uniformly PSPACE-com-

putable i� there is an enumeration f0; f1; : : : contain-

ing each function from S and a polynomial p such that

each computation i; x! fi(x) can be executed in space

p(n + m) where n is the size of x and m that of i. It

is now shown that both concepts can be translated into

each other.

()): Let S be independently NV-learnable with a

polynomial bound p(n) on long term memory and com-

putation space. The learner produces at each stage from

the old content j of the long term memory, the value x

and the value f(x � 1) a prediction M (x; f(x � 1); j)

for f(x) and a new content J(x; f(x�1); j) for the long

term memory. Now the following algorithm computes

for any �nite string � the corresponding function f� :

If x 2 dom(�) then f�(x) = �(x).

Otherwise f�(x) is computed as follows:

j and z are initialized to 0.

For y = 1; 2; : : : ; x the following is done:
3

If y � 1 2 dom(�) then z0 = �(y � 1)

else z0 = M (y; z; j).

Let j0 = J(y; z; j).

Update z = z0, j = j0.

The loop terminates with y = x and the pro-

gram outputs f�(x) = z.

So f� does nothing else than following the function given

by the NV-machine except that in the domain of � the

construction explicitly follows the values coded in this

string. It follows from the construction that f = f�
provided that each of the �nitely many x where M does

not predict f(x) is in dom(�).

Now the amount of space needed for the compu-

tation is determined. The values j and z are used to

store the long term memory and the value f(y � 1) at

the moment the program computes f�(y). They might

be needed twice during the update-time, so they use

together space 4p(n + m). Furthermore the emulation

of the learner might need a bit more space than the

learner itself due to some control structures; thus the

space needed to compute M and J can be estimated

by the upper bound 2p(m + n). The variable y needs

at most as much storage as x, that is space n. The

algorithm has also to store � which by de�nition needs

space m. So the whole computation needs at most space

n+m+ 6p(m+ n) and is uniformly in PSPACE.

((): Let S � ff0; f1; : : :g and let fi(x) be com-

putable using space O(p(m + n)). Now the following

algorithm N with a space-bound in O(p(n)) and a long

term memory of size n NV-learns each fi. In the algo-

rithm, j denotes always the current value of the long

term memory and is used to store the last guess for an

index of the function f .

If x = 0 then j is set to 0 and N predicts f0(0).

Otherwise x > 0 and N receives as additional

input f(x� 1) and has the index j in the long

term memory.

If fj(x� 1) 6= f(x � 1) then j = j + 1.

N predicts fj(x) (for the updated new j).

After each false prediction, j is increased by one. Fur-

thermore whenever j reaches i, all following predictions

are correct. So there are at most i false predictions.

The number of errors is �nite for each f 2 S. The most

space in each step is used to compute fj(x) but this can

be done using space p(m+n). Since j � x in each step,

the amount of space necessary is bounded by p(2n). The

long term memory can even be restricted by n since j

is the only content of the long term memory and j � x.

So the polynomial p(2n) + n is an upper bound for the

size of both resources.

Considering non-f0; 1g-valued functions the question is

to which extent the size o of the largest value f(y) seen

so far is taken into account. If one requests that these

sizes are always bound by p(m+n) then the result above

can be kept, but the second direction might fail if the

learner may use space polynomial in n + o. An ex-

ample for this is the function given by f(0) = 2 and

f(x + 1) = f(x)2. This function grows very rapidly,

f(x) needs size 2x. Thus it is not longer computable

with space polynomial in n since the output can not be

coded in the working space. On the other hand, a NV-

learner having space o2 would just take f(x � 1) and

compute its square, so ffg is NV-learnable with space

polynomial in o but f is not PSPACE-computable. In

order to avoid such pathological situations, it is assumed

from now on that the values of any considered class

ff0; f1; : : :g have uniformly polynomial size. In particu-

lar, classes are taken to be f0; 1g-valued whenever this

is possible.

Well-known classes of f0; 1g-valued functions are the

classes PSPACE, LOGSPACE and P. For these the fol-

lowing statements can be derived from Theorem 2.1:

The whole class PSPACE can not be independently

NV-learned since there is no universal function for it in

PSPACE itself. On the other hand there is a PSPACE-

computable universal function for LOGSPACE and so

LOGSPACE can be independently NV-learned using

polynomial bounds on working space and long term

memory. The question whether the class P can be inde-

pendently NV-learned can not be answered with today's

knowledge on complexity theory since the following two

hypotheses are both possible (but unlikely) and give an-

swers in opposite directions: if P = LOGSPACE then P

is \very small" and can be NV-learned; if P = PSPACE

then P is \very big" and can not be NV-learned.

The next results deal with the case where instead of

a resource bound on the working space a polynomial re-

source bound t on the time to compute each prediction

is used. One direction of the previous result directly

transfers to the corresponding concept of polynomial-

time NV-learning.

Theorem 2.2 If a class S of functions is uniformly

computable in polynomial time then S can independently

be NV-learned with a polynomial time-bound p(n) on the

computation of each prediction and a linear bound on

the size of the long term memory.

The reverse direction is likely to fail. Giving up the

bound on the number of errors, it is possible to NV-learn

every function which takes non-zero values only on the

\tally" inputs 1; 2; 4; 8; 16; : : : and which is computable

with sublinear space. Under the assumption that these

functions are not all contained in P { which is only

slightly stronger than the assumption P 6= PSPACE {

the following theorem shows that there is an indepen-

dently NV-learnable class which contains functions not

computable in polynomial time.

Theorem 2.3 It is possible to NV-learn independently
4

with memory-bound l(n) = 3n and time-bound t(n) =

n � log(n) all tally functions which are computable with

sublinear space.

Proof There is an enumeration f0; f1; : : : of all tally

functions in sublinear space such that fi(x) can be com-

puted with space maxfm;ng. The space bound can be

obtained by choosing the index large enough for these

functions.

The main idea of the proof is to use the numbers

x 2 f2y + 1; 2y + 2; : : : ; 2y+1 � 1g in order to compute

step by step the value fi(2
y+1) where i is the current

guess what the function fi might be. The working-tape

contains without loss of generality only strings of 0s and

1s. So for input 2y+1 and program i � y+1 the working-

tape may contain only binary strings of length up to

y + 1 and so take at most 2y+2 di�erent values. When-

ever a computation takes longer than 2y+2 stages then

it diverges: Some con�guration occurs twice and so the

computation goes in�nitely often through the loop de-

�ned by this con�guration.

So for x = 2y + 1; 2y + 2; : : : ; 2y+1 � 1, the learner

predicts 0 (f(x) = 0 since f is tally) and uses the time to

simulate the stages 5(x� 2y � 1) + z for z = 0; 1; 2; 3; 4

for the computation of fi(2
y+1) where the con�gura-

tion of the working-tape after this 5 stages is stored

into the long term memory together with i and per-

haps also some bits of output. On input x = 2y+1

the learner reads the value from the long term memory,

checks whether the computation has already converged

and if so, outputs the value found on the working-tape.

If this value coincides with that which the learner af-

terwards receives for f(2y+1) then the learner keeps the

guess i otherwise the learner continues to work with the

guess i+ 1.

It is easy to see that the learner for f 2 ff0; f1; : : :g

makes only �nitely often a false prediction and is correct

from that moment where the correct index i is found.

Furthermore at any time during the above procedure

the currently considered index is not larger than the

argument and so all computations can be carried out

without violating the space bound which depends only

on the size of the input.

Next value learning without resource bounds is closed

under union, e.g., if S1 and S2 are NV-learnable classes

so is S1[S2. The same result holds also for independent

NV-learning with resource bounds on long termmemory

and computation space (or time): the new learner just

emulates both algorithms but uses only the prediction

of one of them. Whenever this actual algorithm makes

an error the learner starts to follow the predictions of

the other algorithm. So one obtains:

Theorem 2.4 If two classes are independently NV-

learnable with polynomial resource bounds on long term

memory and computation space so is also their union.

The same holds for bounds on computation time instead

of computation space.

3 Exact NV-Learning

Exact learning requires in addition to the bounds on

working-space and long term memory a bound on the

number of false predictions. This last bound is not con-

stant but is polynomial in the size of the description {

which means logarithmical in the index { of the func-

tion to be learned. The �rst result is that every exactly

NV-learnable class is also independently NV-learnable.

Theorem3.1 If a class S = ff0; f1; : : :g is exactly NV-

learnable with polynomial bounds on long term memory

and working space then S is also independently NV-

learnable with polynomial bounds on the same resources.

Proof This result can be obtained via just proving

that the family is uniformly in PSPACE. Two modi-

�cations are necessary in order to adapt the proof of

Theorem 2.1 ()): �rst it has to be added that the �

has to be chosen so large that � has at least the same

size as the index i of the function fi in the given class

S = ff0; f1; : : :g { it is easy to see that this is possi-

ble. Second the computation is stopped and 0 is output

whenever the space bound p(n + size(�)) is violated.

This will only happen if the � is too small or does not

belong to any function in S.

The next Theorem shows that every family of uniformly

PSPACE-computable f0; 1g-valued functions is exactly

NV-learnable. The proof of this results is obtained

by combining the methods from Theorem 2.1 with the

hal�ng-algorithm as presented by Littlestone [17]. A

similar approach was used by Barzdin and Freivalds [7].

They did not care on resource bounds and found in a

similar setting a very restrictive bound for the number

of mind changes which is a bit below m + log2(m) +

log2(log2(m)) + 2 � log2(log2(log2(m))). The price they

pay is high complexity: \It turns out that if a predic-

tion strategy is error-optimal, then the time complex-

ity of computation" of the prediction of the next value

\may go up, in some sense," double-exponentially [10].

Since there are families which are not uniformly com-

putable in PSPACE according to the given enumeration

but only according to some di�erent one, the result goes

only in one direction.

Theorem 3.2 Let S = ff0; f1; : : :g be f0; 1g-valued

and uniformly PSPACE-computable. Then S is exactly

NV-learnable.

Proof The proof is very similar to that of Theorem 2.1

which has only the disadvantage that it makes too many

errors. So the errors have to be brought down from a

quantity exponential in m to a quantity polynomial in
5

m. The idea to do this is the hal�ng-algorithm [17]

which always considers all still possible solutions and

then predicts the next value according the majority. It

follows that every error halfes the number of still valid

hypotheses and so reduces the number of errors to the

logarithm of the initial quantity of hypotheses. In the

adapted setting the hal�ng algorithm is always used on

�nite groups of hypotheses which is already su�cient

to scale down the number of errors. These groups are

formed by all hypotheses which have the same size.

The adapted algorithm needs (m + n)3 long term

memory, polynomial working space and makes at most

(m+1)2 errors. The algorithm deals for k = 0; 1; : : : ;m

with the groups of all indices of size k and applies on

each group the hal�ng algorithm. When all indices in-

side a group fail, the algorithm takes the next group

until the correct m-th group is reached. In the long

term memory each incorrect prediction with the correct

value is stored { thus the algorithm can simulate all

previous steps and recover the correct values by either

using the prediction in the case it was correct or looking

up in the long term memory in the case it was incor-

rect. So the long term memory can work with the size

(m + 2)2(n + 1) where (m + 1)2 is the upper bound of

the number of errors and n + 1 is the space to store at

each error the correct previous value (one bit) and the

argument where the error occurred (up to n bits). Fur-

thermore, k is stored in the long term memory. So it is

now su�cient to describe the algorithm without worry-

ing on the long term memory but only on the number

of errors.

Input x and f(x � 1).

For a = 0; 1 compute the number ca of all in-

dices of length k which coincide with f(y) for

all y < x and which output a at argument x.

If c0 > c1 then predict 0 else predict 1.

If c0 + c1 = 0 then replace k by k + 1.

The veri�cation is based on the idea, that for every k

at most k + 1 errors are made and so at most (m + 1)2

errors are made until the m-th group with the correct fi
is found. From then on only m errors are made inside

the group and so the error bound is kept. It is easy

to see that this computations can be done with space

(m+ n)4 � p(m+ n) provided that every value fi(x) can

be computed with space p(m + n).

This result requires that the functions fi are uniformly

PSPACE-computable. So the result fails if only nonuni-

formly PSPACE-computability is required: LetM0;M1;

: : : be an enumeration of all PSPACE-computable NV-

learners and let

fi(x) =

(
1 if x � i and i = (2k + 1)2h for

some h; k and Mh predicts 0;

0 otherwise.

Each machine Mh makes on each fi at least i=2
h+1 =

2m�h�1 mistakes and so the polynomial error bound

can not be kept by any machineMh. But note, that the

class is still NV-learnable simply by always predicting 0

and so one sees that just dropping the requirement that

the fi are uniformly in PSPACE allows to �nd a class

which is independently but not exactly NV-learnable.

The next investigations return to classes which are uni-

formly in PSPACE. They are dealing with natural ex-

amples and try to get the resource bounds as restric-

tive as possible. In particular they try to replace the

bound on computation space by one on computation

time whenever this is possible.

Somehow the �rst example, the non-erasing pattern

languages [1], still needs polynomial computation space

(or, alternatively, nondeterministic computations). The

di�culty is not �nding the correct pattern but for evalu-

ating it in each stage. But they are still well-behaved in

some other sense: the long term memory and the com-

putation space depend only on the size n of the current

x and not on the size m of the pattern to be learned.

In order to make technical de�nitions easier, num-

bers and binary words are identi�ed as follows: A string

a0a1 : : :an corresponds to the number i with the binary

representation 1a0a1 : : :an. So when learning functions

with the domain f0; 1g�, the data is represented in the

order of the corresponding numbers: f(�), f(0), f(1),

f(00), f(01), f(10), f(11), f(000), f(001) and so on. In

particular a string � is before a string � i� 1� de�nes a

binary number less than 1� .

Example 3.3 The class of all languages generated

by non-erasing patterns can be exactly NV-learned with

m + 1 errors, 2n � log(n) bits long term memory and

computation space 3n.

Proof The learning algorithm is now explained for the

example 10x2x2x0x1x0. The learner predicts always 0

until this prediction is false the �rst time. This happens

exactly at the pattern 1000000 where all variables are

mapped to 0. The learner now stores the pattern as

1000000 into the long-term memory and predicts from

now on always the current value of the stored pattern.

Each time the learner errs, a new variable has to

be added. By the ordering of the strings, the �rst time

a until now undiscovered variable causes a problem is

when this variable is set to 1 while all other variables

are set to 0. So it is easy to identify the variable: in the

given case, x0 is identi�ed by comparing the pattern

1000101 with the stored pattern 1000000, so the stored

pattern is corrected to 1000x00x0. x1 is discovered when

the learner erroneously predicts 0 for 1000010. The pat-

tern is then corrected to 1000x0x1x0 and after failing at

the input 1011000 the learner has to do the third update

to 10x2x2x0x1x0. So the learner identi�es the pattern

with 1 error at the beginning followed by 3 errors where
6

each variable causes exactly one error.

To see that the other two resource-bounds are sat-

is�ed one should note that the pattern can be stored

with 2n � log(n) bits if n exceeds the length of the pat-

tern. But since the �rst error occurs when this length is

reached, this is no problem. The term log(n) is due to

the fact that the string to represent the pattern does not

only consist of the constants 0 and 1 but also of codes

for the variables. The easiest way to do it is to use the

alphabet 0; 1; 2 where 2 is used as a separator and the

binary sequences 00; 01; 10; 11; 100;101; : : : are used to

represent the variables. So the pattern above could be

stored as 21202102102002012002. The space bound 3n

is enough to evaluate the pattern.

While pattern languages can be identi�ed with work-

ing space and long term memory only depending on the

size of the current value x, there are other exactly learn-

able classes where the resource bounds also must take

in account the size of the index of the function to be

learned. An example for such a class are the periodic

functions. The periodic function fi is de�ned as follows:

let 1a1a2 : : :am be the binary representation of i. Then

fi(x) = ak for that k with k � x modulo m.

Example 3.4 The class of all periodic f0; 1g-valued

functions is

(a) exactly NV-learnable with parameters b = 2m + 1,

l = m+ log(m), t = (m + n)2;

(b) not exactly NV-learnable with parameters b = p(m)

and l = p(n) for any polynomial bound p.

Proof (a): The learner keeps always in its long term

memory the following data: an estimation h for m and

the period a1a2 : : : ah representing the values f(1); f(2);

: : : ; f(h).

Input: x, f(x � 1);

Long term memory: h and a1a2 : : :ah.

Compute k 2 f1; 2; : : :; hg

such that k � x� 1 modulo h.

Check whether f(x � 1) 6= ak.

If so, then the storage has to be adapted:

Search for the �rst h0 � x such that

f(y) = f(y + h0) for all y � x� h0.

Let bk = f(k) for k = 1; 2; : : :; h0.

Replace a1a2 : : : ah by b1b2 : : : bh0 and

h by h0.

Compute k 2 f1; 2; : : :; hg

such that k � x modulo h.

Output ak as guess for f(x).

Note that the computation of f(y) for y < x � 1 can

be done via the old long term memory and that the

new one (whether changed or not) then codes all values

f(y) with y < x. The guess ak at the end of the algo-

rithm is of course always based on the updated storage.

Since f(y) = f(y +m) for all y, the update of the long

term memory never produces a h > m and so the re-

quirement on the size of the long term memory is kept:

the binary string a1a2 : : :ah needs at most space m; its

length h needs at most space log(m). Furthermore if

x > 2m and f(y) = f(y + h) for some h < m and all

x < 2m � h then f(y) = f(y + h) for all y, thus any

error occurring beyond 2m is the last and the algorithm

makes at most 2m + 1 false predictions. The bound on

the computation-time is due to the fact that the loop in

the algorithm is only used for x � 2m+1 and the other

part is at most quadratic in n, the size of x.

(b): Assume that M is a learner which identi�es ev-

ery periodic function with long term memory p(n) and

p(m) errors. Then for each string a1a2 : : :am there is a

number x 2 f0; 1; 2; : : : ; p(m)g such that M correctly

predicts the values f(mx+1); f(mx+2), : : : ; f(mx+m).

Since f(mx + k) = ak it is possible to compute the se-

quence a1a2 : : :am from this value x and from the value

of the long term memory which existed before predict-

ing f(mx+1). Now x can be coded with log(p(m)) bits

and the long term memory before predicting f(mx+1)

has the size p(log(xm+ 1)) � p(log(p(m)m+ 1)). Thus

there is a discription for a1a2 : : : am which needs at most

p(log(p(m)m + 1)) bits. On the other hand for each

length m there is a string which can not be represented

with less than m bits by the standard Kolmogorov-

complexity argument. So for each m, the relation

log(p(m)) + p(log(p(m)m + 1)) � m

holds and it follows that p can not be a polynomial since

then the expression on the left-hand side of the relation

would be bounded by a polynomial in the logarithm of

m { but such a function does not dominate the iden-

tity.

Note that the part (b) does not require any bounds on

computation time or space but only on the number of

errors and the size of the long term memory. The result

can be generalized to learning regular languages. Reg-

ular languages are represented by deterministic �nite

state automata and the size m of such a representation

can be estimated by 2k � log(k) where k is the number of

states of the automaton. Adapting a result of Ibarra and

Jiang [13] it is shown that the class of regular languages

can be NV-learned with polynomial resource bounds de-

pending on n+m but not with these bounds depending

on n alone.

Example 3.5 The class of all regular languages is

(a) exactly NV-learnable with parameters b = p(m),

l = p(m+n), t = p(m+n) for some polynomial bound p;
7

(b) not exactly NV-learnable with parameters b = q(m)

and l = q(n) for any polynomial bound q.

Proof (a): Without loss of generality, the languages

are subsets of f0; 1g� where each string a0a1 : : :an cor-

responds to the binary number x = 1a0a1 : : :an. The

learning algorithm is then the result of Ibarra and Jiang

[13, Theorem 5] that regular languages can be learned

in time polynomial in m using equivalence queries for

which in the case of disagreement the least counterex-

ample is returned; least means here according to the

order given by the above coding of words into the num-

bers f1; 2; : : :g. The translation of their algorithm goes

as follows:

� It can be checked whether two �nite automata be-

have di�erent below a value x using polynomial

time in the size n of x and the size of the two �nite

automata. Therefore it can be assumed without

loss of generality that the algorithm makes only

such queries which coincide with the values seen so

far. Thus the counterexamples are strictly increas-

ing during the learning process.

� The long term memory always carries the last con-

jecture and the internal data of the algorithmwhen

this conjecture is made. On input x, f(x � 1) it is

checked whether the conjectured automaton evalu-

ates the word coded by x�1 to f(x�1). If not, the

word coded by f(x�1) is supplied as the least coun-

terexample and the algorithm is simulated until a

next conjecture comes up which is now consistent

with f(0); f(1); : : : ; f(x�1). Then all internal data

and the new conjecture are stored again in the long

term memory. In both cases (whether f(x�1) was

false or correct) the algorithm evaluates the cur-

rent automaton for x and outputs the result as a

prediction for f(x).

The number of false predictions does not exceed the

number of equivalence queries of the algorithm of Ibarra

and Jiang. Thus it is bounded by a polynomial. Sim-

ilar the running time in each step and the long term

memory are bounded by a polynomial in m and n; the

parameter n can not be dropped since at any prediction,

the automaton has to evaluate two words of length n.

(b): This part follows from the fact that every periodic

f0; 1g-valued periodic function can be identi�ed with a

regular language. The corresponding deterministic �-

nite automaton has the states 1; 2; : : :;m such that 1

is the initial state, state i is accepting i� f(i) = 1 and

whenever the automaton is in state i and reads the sym-

bol a from the input then it goes to that state which is

equivalent to 2i+amodulom. So the periodic functions

form a subclass to the regular languages and the non-

learnability of them transfers to the non-learnability of

the automata since the size of representation grows only

from m bits at the functions to m � log(m) bits at the

automata which is still polynomially bounded in the old

size.

For f0; 1g-valued functions the size of the input depends

only on the size n of x since the value f(x � 1) can

be represented by only one bit. This is di�erent for

arbitrary functions. Using the example of the integer-

valued polynomials it is shown that besides the size of

x it is also necessary to consider also the parameter o

which is the maximum size of some f(y) with y < x or

the parameter m which is the size of the concept to be

learned. It is natural to code the polynomials such that

m � k for the degree k of the polynomials to be learned.

Let p denote any given polynomial resource bound.

Example 3.6 The NV-learnability of the class of inte-

ger-valued polynomials depends on the choice of the pa-

rameters:

(a) NV-learnable if b = m + 1, l = m, t = (m+ n)2;

(b) NV-learnable if b = 5m2, l = t = 2(m + o)2;

(c) not NV-learnable if b = p(m) and l = p(n).

Proof (a): The learning algorithm stores in the long-

term memory only those values of f which are not pre-

dicted correctly by the interpolation algorithm working

with all previous data { thus with this knowledge it is

always possible to recover all old values. Since for each

x > k the value f(x) can be computed by only knowing

f(0); f(1); : : : ; f(k), the long term memory has always a

pre�x of the string f(0)f(1) : : : f(k) in it and so does by

de�nition not use more space than the bound m. Inter-

polating a polynomial never produces more errors than

its degree plus 1 as long as all previous values can be re-

constructed from the long term memory. Thus the error

bound is kept and also the bound on the computation

time can be satis�ed since evaluating a polynomial at x

using some interpolation procedure with pairs (0; f(0)),

(1; f(1)), : : : ; (k; f(k)) is a algorithm quadratic in the

size of x and the data.

(b): The basic idea of the algorithm is to keep the last

values f(a); f(a+1); : : : ; f(x�2) in the long term mem-

ory and to interpolate f(x� 1) from them. The update

rule for the long term memory is to compute the least

b � a such that f(b); f(b + 1); : : : ; f(x � 1) do not use

more space than 2(o+n)2� log(o) where the log(o) bits

are necessary to store o whose new value is always the

maximum of the size of f(x � 1) and the old value.

So the main task is that within 4m2 + m the size

of the parameter o has become large enough to store

the information necessary to interpolate the next value.

Since each of the values f(b); f(b+1); : : : ; f(x�1) needs

at most space o it is su�cient to show that there is some

number y � 4m2 for which f(y) � 2k so that from then

on o � k and for x � k + z the last k values are in the
8

long term memory and for no x � z + k a false predic-

tion is made. Note that k � m and thus it is su�cient

to show that at most 4k2 + k errors are made. There

are two equivalent ways to represent a polynomial of

degree k:

f(x) = a � (x� x1) � (x� x2) � : : : � (x� xk);

f(x) = a0 + a1 �
x�1
1

+ a2 �
x�1
1
� x�2

2
+ : : :

+ ak �
x�1
1
� x�2

2
� : : : � x�k

k
:

In the �rst representation, the xi are the complex num-

bers where f takes the value 0. In the second all the

ai are integers and each ai is the di�erence between

f(i) and the value obtained via interpolating the data

(x; f(x)) for x = 1; 2; : : :; i � 1. So it follows that

jaj = jakj
1

1�2�:::�k
� k�k since ak is an integer. For

each xi there are at most 4k natural numbers x with

jx � xij < 2k. Thus some x 2 f0; 1; : : : ; 4k2g satis�es

jx � xij � 2k for all i. At this number x, jf(x)j �

jaj � (2k)k � 2k and so f(x) needs at least k bits for its

binary representation. It follows that o � k at x = 4k2

and f(x) is predicted correctly for all x � 5k2. So the

number of errors is polynomially bounded in k and thus

also in m.

(c): The Kolmogorov-argument for the unlearnability

must be adapted since in contrast to the case of peri-

odic functions, the input f(x�1) might contribute much

more information than a single bit. Now assume that

k+1 numbers a0; a1; : : : ; ak 2 f2
k; 2k+1; : : : ; 2k+1�1g

are given. In each of these numbers can be coded k bits

and so the parameters can be chosen such that they

code a string with Kolmogorov complexity k � (k + 1).

Assume now that f can be learned with at most

p(m) = q(k) errors where q is a polynomial which is

obtained using the fact that the size of the represen-

tations of the functions to be learned depends polyno-

mially in k. Thus there is a number x � q(k)(k + 1)

for which the algorithm predicts all values f(y) cor-

rectly from f(y � 1) and y for y = x; x+ 1; : : : ; x+ k.

These predictions allow to interpolate the polynomial

and to compute a0; a1; : : : ; ak from the following data:

f(x � 1), x and the content of the long term mem-

ory after processing x � 1. f(x � 1) is bounded by

2k+1(k+1)(q(k)(k+1))k and can thus be represented by

(k+1) � log(2(k+1)q(k)) � c �k � log(k) bits where c is a

su�ciently large constant. x is bounded by q(k)(k+1),

thus n is bounded by log(q(k)) + log(k+ 1) and so p(n)

is bounded by p(log(q(k)) + log(k + 1)). So the whole

number of bits available to compute a0; a1; : : : ; ak is a

product of k and a function r(k) which is polynomial in

log(k). For su�ciently large k the now obtained relation

k � (k+1) � k � r(k), that is k+1 � r(k) fails since r is a

polynomial in log(k). This contradiction gives that the

class of these f can not be learned under the considered

criterion.

4 Resource-Bounded Explanatory

Learning

One nice result of inductive inference without resource-

bounds is the Theorem of Barzdins and van Leeuwen

[9, Theorem 2.19] which states that predicting the next

value is the same concept as explanatory learning via a

machine, which never outputs \buggy" programs. This

means in particular that every NV-learnable class is

Ex-learnable but some Ex-learnable classes are not NV-

learnable. Somehow the inclusion needs the absence of

a resource bound on the long term memory: Let S be

the class of all functions which take only �nitely often

a value di�erent from 0. They can be independently

NV-learned by always guessing 0 but they can not be

independently Ex-learned since for su�ciently di�cult

functions the bound of the long term memory makes it

impossible to remember all the arguments at which the

function di�ers from 0. Therefore it is necessary to work

with Ex� instead of Ex, that means the �nal hypothesis

may di�er from the function to be learned at �nitely

many arguments.

De�nition4.1 M resource-bounded Ex�-learns a class

S of functions i� for every M outputs an index from

a given space of hypotheses for every input a0a1 : : :ax
and these hypotheses converge on ever function f to

a �xed index which computes f with at most �nitely

many errors. The learner has to satisfy for any f 2 S

the following resource bounds.

� Long term memory: this bound l is de�ned as in

the case of NV.

� Computational complexity: the computation of ev-

ery hypothesis has to satisfy a polynomial resource

bound on space (s) or time (t).

� Number of mind changes: the number of the argu-

ments x where M outputs a di�erent hypothesis as

previously at x� 1.

� Number of errors: the bound b on the number of ar-

guments x�1 where M outputs a guess e such that

the e-th hypothesis with input x does not compute

f(x).

The �rst two bounds l and s (l and t, respectively) have

always to be a polynomial in the given parameters n, m

and o. The last two bounds have only to be �nite for

each f 2 S for the case of independent Ex�-learning and

be a polynomial in m for the case of exact Ex�-learning.

While an exact Ex�-learner has to use a given space of

hypothesis, an independent Ex�-learner may choose the

space of hypothesis by itself. So independent learning

corresponds to the class comprising learning as used by

Lange and Zeugmann [16].
9

concept time memory mind changes errors

pattern languages c � n � log(n) 3n � log(n) m + 1 m+ 1

regular languages poly(n +m) poly(n+m) poly(m) poly(m)

polynomials 1 c � (n+m)2 m m + 1 m+ 1

polynomials 2 c � (n+ o)2 5(n+ o)2 5m2 5m2

Table 1: Resource-Bounds for Prominent Classes

The last two bounds have to be polynomial in the size m

of the smallest index in the case of exact Ex�-learning

and have to be only �nite in the case of independent

Ex�-learning. The �rst two bounds are polynomial in

n, o and m in the exact case and polynomial only in n

and o in the second case.

Theorem 4.2 In the case of a resource bound on com-

putation space, every independent NV-learnable class is

also independent Ex�-learnable.

Proof Theorem 2.1 also holds when the functions take

values which are uniformly polynomially bounded in size

(instead of only the values 0 and 1); following the con-

vention that only such classes are considered to be in-

dependently NV-learnable, one can adapt the proof as

follows: every independently NV-learnable class is con-

tained in a uniformly PSPACE-computable class. Now

using the other direction of the proof, the learner wit-

nessing that every uniformly PSPACE-computable class

of functions is independent NV-learnable is modi�ed

into one which witnesses that the class is also indepen-

dent Ex�-learnable: instead of outputting fi(x) it out-

puts the index i with respect to the hypothesis space

ff0; f1; : : :g.

Example 4.3 Table 1 gives an overview on the exam-

ples on the last section and states under which resource

bounds it is possible to exactly Ex�-learn the classes from

Section 2. In the table, c is a su�ciently large constant

which also depends on the chosen machine model.

So pattern languages can be learned via a machine

which uses in each step time and long term memory lin-

ear in n � log(n), changes its mind at most m+ 1 times

and makes at most m+1 many errors. For polynomials,

there are two possibilities: either the bounds on compu-

tation time and long term memory are polynomial in

n+m or in n + o.

All these concepts can also be independently Ex�-

learned with bounds polynomial in n on computation

time and long term memory.

The next theorem establishs several basic facts on Ex�-

learning provided one follows the de�nition that a class

S � PSPACE to be learned needs not to be uniformly

PSPACE-computable and that it is su�cient if the lear-

ner provides any PSPACE-algorithm for functions in

this class. For this proof, let M0;M1; : : : be an enu-

meration of all PSPACE-computable Ex�-learners.

Theorem 4.4 There are classes S0 = ff0; f2; f4; : : :g

and S1 = ff1; f3; f5; : : :g such that:

(a) S0 and S1 are nonuniformly contained in PSPACE.

(b) S0 and S1 are independently Ex�-learnable.

(c) S0 [S1 is not independently Ex�-learnable.

Proof First the construction of f2k and f2k+1 is given

inductively. f2k;0 and f2k+1;0 are initialized as 0
k1, that

means that the �rst k arguments are mapped to 0 and

the next one to 1. Now these functions are extended as

follows:

The invariant of the de�nition is that in each stage

s the strings f2k;s and f2k+1;s have the same length

and Mk has the same long term memory j after pro-

cessing f2k;s and f2k+1;s. Now one looks for the �rst

di�erent strings �; � of the same length such that Mk

takes again the same long term memory after processing

f2k;s� and f2k+1;s� . Now one extends these functions

by f2k;s+1 = f2k;s�0 and f2k+1;s+1 = f2k+1;s�0.

Now one veri�es the constructions. First the 0 of

the extensions �0 and �0 has in both cases the same

e�ect on the long term memory and so the induction

invariant is kept. Furthermore the guess after reading

f2k;s�0 and f2k+1;s�0 is the same since in both cases the

machine Mk uses the long term memory j and receives

as input in both cases the same argument x plus value

0. So provided that Mk converges on both functions,

Mk converges on them to the same index. Since they

di�er in each step of the construction at least once (�

and � are not equal), f2k and f2k+1 di�er at the end at

in�nitely many arguments and so Mk fails to infer at

least one of these two functions. So (c) holds.

Such strings �; � are found since Mk has a poly-

nomial resource bound p(n) on its long term memory

and thus has to take the same value for two strings

�; � 2 f0; 1gp(n)+1. It follows that f2k and f2k+1 can

be computed with computation space (p(n) + n)2, that

means in PSPACE. Thus (a) holds.

Furthermore PSPACE-programs for f2k and f2k+1
can be computed from k. So a learner which has just

seen the input 0k1 can generate two programs where

the program e2k computes f2k and the program e2k+1
computes f2k+1. From then on the Ex�-learner for S0
keeps the guess e2k and that for S1 keeps the guess S1.

10

It follows that (b) is satis�ed.

While the result that explanatory learning is not closed

under union is parallel to the result for learning without

resource bounds the way how it is obtained is di�erent:

in the resource bounded case the problem is not that one

learner may not converge but the problem is that it is

impossible to make an amalgamation or more directly

said, if an amalgamated program turns out to derive

from inconsistent data it is impossible for the learner

to check which of the two programs is incorrect { the

learner just has forgotten the information necessary to

detect this. As a corollary one obtains for both variants,

independent and exact learning:

Corollary 4.5 Ex� is strictly more powerful than NV.

PSPACE can not be Ex�-learned.

The fact that Ex� is not closed under union shows that it

makes sense to consider teams. The next result states

somehow that such teams can always be taken in the

form \one out of a". So the team-hierarchy is exactly

the same as the one obtained by Pitt and Smith [22] for

Ex-learning without resource bounds.

Theorem 4.6 A team of size (c; d) is as powerful as

a team of size (1; a) for independent Ex�-learning i�
1

a+1
< c

d
� 1

a
. In particular a team of size (1; a+ 1) is

more powerful than a team of size (1; a) for independent

Ex� learners.

Proof A modi�cation of the proof of Theorem 4.4

shows that each (1; a + 1)-team is more powerful than

a (1; a)-team. Furthermore if S can be learned via an

(1; a)-team and c
d
� 1

a
then one can obtain the (c; d)-

team simply by using each machine from the (1; a)-team

m times and adding for the rest arbitrary learners. It

is clear that on any f 2 S at least m machines succeed.

So it remains only to show that every (c; d)-team can be

replaced by an (1; a)-team where a is the least integer

such that 1
a
� c

d
.

Let a resource bounded (c; d)-teamM1;M2; : : : ;Md

learn a given class S. For each set D � f1; 2; : : : ; dg

of cardinality c, a combined learner HD is de�ned. HD

simulates all learnersMe with e 2 D and outputs always

the smallest hypothesis of this team. Furthermore HD

runs a statistic which is intended to approximate the

last error. This is stored in an extra variable qD;x in

the long term memory and whenever the machine HD

�nds an error at input x, it updates qD;x+1 = x and

keeps qD;x+1 = qD;x otherwise. Here HD looks for two

types of errors: �rst some Me with e 2 D makes a mind

change. Second HD simulates for all input y which is

above qD;x and below a function u(x) depending on the

resource bounds all programs output by the learners at

x with input y: if they disagree on some of these input

y then this indicates that the simulated learners still do

not have converged to a reasonable hypothesis. Here the

function u is just the largest z which allows to evaluate

all the hypotheses for y = 0; 1; : : : ; z within the given

resource bounds; u is not bounded by a constant and

monotone, but u might be extremely sublinear.

The team N1; N2; : : : ; Na is chosen as follows: each

learner follows one guess of some machineHD where the

machine tries on one hand to get the guess of a learner

HD with very high con�dence and on the other hand

not to interfere with the guesses of the other machines

such that as many guesses are covered as possible. So

at each x each learner Nh chooses a Dh such that the

following holds:

� Dh � f1; 2; : : :; dg and jDhj = c.

� Dh \Dl = ; for all l < h.

� qDh;x is minimal among all qD;x where D \Dl = ;

for all l < h, D � f1; 2; : : : ; dg and jDj = c.

Furthermore the set Dh is never replaced by some other

if this is not necessary. This means: if there are two

sets Dh and Dh0 such that both are disjoint to the Dl

with l < h and qDh;x = qD
h0 ;x then the learner Nh does

not oscillate between them but remains at the same set

which Nh has already used before.

A machine Nh is said to converge if it almost always

takes the same output as a �xed machine HD whose

value qD;x does never go above a certain bound rD.

The way the machine Nh is constructed implies that

all machines Nl with l < h also converge if Nh does. So

assume that the machines N1; N2; : : : ; Nh converge and

Nh+1; Nh+2; : : : ; Na diverge. Let D1; D2; : : : ; Dh denote

the sets which are used by N1; N2; : : : ; Nh almost every-

where. Now there are two cases:

(i): Some set Dl with l < h contains a correct ma-

chine, that is there is an e 2 Dl which is an index of

some Me which succeeds on f . Since the value qDl;x

always stays below rDl
it follows that after processing

x = rDl
the learner Ne does not make any further mind

change and that the index output byHDl
does not di�er

from the program computed by the last hypothesis ofNe

above rDl
. SinceMe converges to an index which di�ers

only �nitely often from the function to be learned, so

does Nl.

(ii): No set Dl with l < h contains a correct ma-

chine, that is there is no e 2 Dl which is an index of

some Me which infers f . Since there are c such indices

and since (a+ 1)c > d it follows that h < a, thus Nh+1

diverges. But there is a set D of cardinality c which

contains only indices of machines which infer f . Every

machine Me with e 2 D changes its mind only �nitely

often on f and its last guess is always a �nite variant

of f . In particular the last guesses of the machines Me

with e 2 D are almost everywhere equal. It follows that

the value qD;x is increased only �nitely often and so re-

mains below some bound rD. Since D is disjoint to the
11

Dl at almost all x it follows that Nh+1 has to take some

D0 with qD0;x � rD at almost all x. This would imply

that Nh+1 converges in contrary to the assumption and

thus case (ii) does not hold.

It follows that always case (i) holds and thus the

(1; a)-team N1; N2; : : : ; Na learns S under the criterion

of resource bounded Ex�. Here the proof is independent

on the actual choice of the parameters and it is su�cient

to permit the (1; a)-team to use resource bounds which

are increased by some suitable constant factor.

Acknowledgment We would like to thank E�m Kin-

ber and Matthias Ott for proofreading and commentary.

Also we are grateful to the anonymous referees for sev-

eral suggestions and references.

References

[1] Dana Angluin (1980): Finding patterns common to

a set of strings. Journal of Computer and System

Sciences 21:46{62.

[2] Dana Angluin (1987): Learning Regular Sets From

Queries and Counterexamples. Information and

Computation 75:87{106.

[3] Dana Angluin and Carl Smith (1983): Inductive in-

ference: theory and methods. Computing Surveys

15:237{269.

[4] Janis Barzdins (1971): Prognostication of au-

tomata and functions. Information Processing '71

(1) 81{84. Edited by C. P. Freiman, North-Holland,

Amsterdam.

[5] Janis Barzdins (1974): Two theorems on the lim-

iting synthesis of functions. In: Theory of Algo-

rithms and Programs, vol. 1, 82{88. Edited by Ja-

nis Barzdins, Latvian State University, Riga.

[6] Janis Barzdins and Rusins Freivalds (1972): On

the prediction of general recursive functions. Soviet

Math. Doklady 13:1224{1228.

[7] Janis Barzdins and Rusins Freivalds (1974): Pre-

diction and limiting synthesis of e�ectively enumer-

able classes of functions. Theory of Algorithms and

Programs, vol. 1, Latvia State University 101{111

(in Russian).

[8] Leonard Blum and Manuel Blum (1975): Towards

a Mathematical Theory of Inductive Inference. In-

formation and Control 28:125{155.

[9] John Case and Carl Smith (1983): Comparison of

Identi�cation Criteria for Machine Inductive Infer-

ence. Theoretical Computer Science 25:193{220.

[10] Rusins Freivalds, Janis Barzdins and Karlis Pod-

nieks (1991): Inductive Inference of Recursive

Functions: Complexity Bounds. in: Baltic Com-

puter Science: Selected Papers, edited by Janis

Barzdins, Springer, Heidelberg, Lecture Notes to

Computer Science 502:111{155.

[11] Rusins Freivalds, E�m Kinber and Carl H. Smith

(1993): On the impact of forgetting on learning

machines. Proceedings of the 6th Annual ACM

Conference on Computational Learning Theory

(COLT) 165{174.

[12] Mark Gold (1967): Language Identi�cation in the

Limit. Information and Control 10:447{474.

[13] Oscar H. Ibarra and Tao Jiang (1988): Learning

Regular Languages from Counterexamples. Pro-

ceedings of the First Annual Conference on Com-

putational Learning Theory (COLT) 371{385.

[14] E�m Kinber (1994): Monotonicity versus E�-

ciency for Learning Languages from Texts, Pro-

ceedings of the Fifth Workshop on Algorithmic

Learning Theory (ALT) 395{406.

[15] E�m Kinber and Frank Stephan (1995): Lan-

guage Learning from Texts: Mind Changes, Lim-

ited Memory and Monotonicity. Information and

Computation, 123:224{241.

[16] Ste�en Lange and Thomas Zeugmann (1993): Lan-

guage learning in dependence on the space of hy-

potheses. Proceedings of the Sixth Conference on

Computational Learning Theory (COLT) 127{136.

[17] Nick Littlestone (1988): Learning quickly when ir-

relevant attributes abound: a new linear-threshold

algorithm. Machine Learning, 2: 285{318.

[18] Nick Littlestone and Manfred Warmuth (1994):

The weighted majority algorithm. Information and

Computation 108:212{261.

[19] Hartley Rogers, Jr. (1967): Theory of Recursive

Functions and E�ective Computability. McGraw-

Hill Book Company, New York.

[20] Piergiorgio Odifreddi (1989): Classical Recursion

Theory. North-Holland.

[21] Daniel Osherson, Michael Stob and Scott Weinstein

(1986): Systems that Learn. Bradford { The MIT

Press, Cambridge, Massachusetts.

[22] L. Pitt and Carl Smith (1988): Probability and

plurality for aggregations of learning machines. In-

formation and Computation 77:77{92.

[23] Robert Soare (1987): Recursively Enumerable Sets

and Degrees. Springer-Verlag Heidelberg.

[24] Leslie Valiant (1984): A Theory of the Learnable.

Communications of the Association of Computing

Machinery 27:1134{1142.

[25] Vladimir Vovk (1992) Universal Forecasting Algo-

rithms. Information and Computation 96:245{277.

[26] Thomas Zeugmann (1993): Algorithmisches Ler-

nen von Funktionen und Sprachen. Habilitations-

schrift an der Technischen Hochschule Darmstadt.
12

