
Functionality versus Practicality: Employing Existing Tools

for Recovering Structural Design Patterns

Lutz Prechelt (prechelt@ira.uka.de)
Fakult�at f�ur Informatik
Universit�at Karlsruhe

D-76128 Karlsruhe, Germany
Phone: +49/721/608-4068, Fax: -7343

Christian Kr�amer (ckraemer@ctec-sw.com)
Computec GmbH

Software Engineering Dept.
D-76133 Karlsruhe, Germany

January 19, 1998

Submission to ACM TOSEM

Abstract

The object-oriented design community has recently begun to collect so-called software design

patterns : descriptions of proven solutions common software design problems, packaged in a

description that includes a problem, a context, a solution, and its properties. Design pattern

information can improve the maintainability of software, but is often absent in program

documentation. We present a system called Pat for localizing instances of structural design

patterns in existing C++ software. It relies extensively on a commercial CASE tool and a

PROLOG interpreter, resulting in a simple and robust architecture that cannot solve the

problem completely, but is industrial-strength; it avoids the brittleness that many reverse

engineering tools exhibit when applied to realistic software. To evaluate Pat, we quantify

its performance in terms of precision and recall. We examine four applications, including

the popular class libraries zApp and LEDA. Within Pat's restrictions all pattern instances

are found, the precision is about 40 percent, and manual �ltering of the false positives is

relatively easy. Therefore, we consider Pat a good compromise: modest functionality, but

high practical stability for recovering design information.

CR classi�cation: D2.2 CASE, D.2.6, D.2.7 documentation, D.2.10 representation, I.5.5

General terms: Algorithms, Design, Measurement.

Keywords: design patterns, reverse engineering, search.

1 Design patterns for program understanding

The general problem of automatically recovering design intentions from program source code
cannot be solved at all. Even partial solutions are extremely di�cult. Not only is there an

1



enormous number of possible design intentions and not only can each of them be realized in an
enormous number of di�erent ways, but also is any single hint that is available in the source
program very small, ambiguous, and unreliable. However, object-oriented programming and in
particular software design patterns reduce the task, as they make much more design structure
explicit in the source code.

Software design patterns, as introduced by Gamma et al. [7], Buschmann et al. [5] and others,
are packaged descriptions of a common software design problem, its context, appropriate ter-
minology, one or several solutions, and their advantages, constraints, and other properties. A
design pattern packages expert knowledge and can be reused frequently and easily. Each pattern
is a microarchitecture on a higher abstraction level than classes.

Design patterns are a rewarding target for reverse engineering: According to [1, 7], design
patterns improve communication, both between designers and from designers to maintainers,
by de�ning a common design terminology. Hence, it is useful to recognize instances of design
patterns in designs where they were not used explicitly or where their use is not documented.
Recognizing them could presumably improve the maintainability of software, because larger
chunks could be understood as a whole. In fact we have found in a controlled experiment
[12, 13] that maintainers equipped with design pattern information solved maintenance tasks
quicker or with fewer errors than a control group of maintainers having only detailed \normal"
source code comments. This also indicates that it is not trivial for people to detect design
patterns in software. Thus, a tool for automatic design pattern recovery would be useful.

Automatically �nding all instances of all design patterns is still an impossible task, but design
patterns open, for the �rst time, the possibility of a reasonable, yet low-complexity partial

solution to design recovery. This is the purpose of the present work: to explore the low end of
design recovery. How simple can the architecture of a tool be that still produces useful output?
Can we realize a reasonable part of the possible functionality for a tiny fraction of the usual
cost?

The advantage of this approach is practicality. Such a tool will be much more robust than a
more complicated one. It can be made industrial-strength| able to dependably process realistic
software | with modest e�ort.

Our contributions are twofold:

1. We present an approach of extreme simplicity for �nding instances of structural design
patterns in existing software (C++ in our example) and a tool, the Pat system.

2. We empirically show that despite its simplicity the approach solves a non-negligible part of
the design pattern recovery problem for real-world software.

Throughout most of this article we will use the term pattern to refer only to the solution used
in a particular design pattern instance.

We describe in order the general approach taken, the representation we used for patterns and
software, and a quantitative evaluation of the system. Afterwards we discuss alternative ap-
proaches to the problem and related work.

2



2 Approach

2.1 Fundamental design decisions

The following central design decisions underlie our work:

� D1: Rely on existing tools as much as possible, in particular for processing the source
code.

� D2: Prefer restricting the tool's functionality over making it fragile.

� D3: Within its fundamental restrictions, make the tool freely extensible.

The consequence of D1 is using a commercial object-oriented CASE tool as a front-end and
Prolog as a search machine. The consequence of D2 is searching for structured design patterns
only (i.e., patterns that hardly rely on speci�c behavior of methods, but are largely determined
by the static structure of the classes instead) and limiting the search to only one implementation
variant of each pattern. The consequence of D3 is encoding the pattern descriptions modularly.

2.2 The basic idea: How the Pat system works

We will use an example to explain how Pat works.

Client Target

Request ()

Adaptee

Speci�cRequest ()

Adapter

Request () adaptee ! Speci�cRequest ()

-

��TT

-

adaptee

Figure 1: OMT diagram of the design pattern \Adapter"

See the description of an Adapter (more precisely: Object Adapter) in the OMT class diagram
[17] of Figure 1. The purpose of an Adapter is to provide an additional interface to an adapted
class (called the adaptee), so that the adapter class can adhere to the calling conventions of
a client but the interface of the adaptee need not be changed. The Adapter pattern requires
that there are four classes Client, Target, Adapter, and Adaptee. Adapter must be a subclass
of Target and must delegate Client calls to a method Request of the Target class to a method
Speci�cRequest (with di�erent interface) of the Adaptee class. An Adapter instance needs an
association (e.g. a pointer) to an Adaptee instance.

3



C++
source
code

structural
analysis D2prolog

PROLOG
rules
PROLOG
facts

PROLOG
query

pattern
instance
candidates

OMT
pattern
diagrams

P2prolog

Figure 2: Architecture of the Pat system

When looking for the Adapter pattern, search the C++ �les of an existing software system for
triples of Target, Adapter, and Adaptee that have methods corresponding to Request and Speci-
�cRequest and have the association and delegation mentioned above. Any such constellation
may represent an instance of the Adapter pattern to be found and should hence be output.

2.3 The Pat architecture

The fundamental design idea of Pat is to represent both patterns and designs in Prolog and
let the Prolog engine do the actual search. The basic design information itself is extracted
from source code by the structural analysis mechanism of a commercial CASE tool: Paradigm
Plus [15] is an object-oriented CASE tool that supports several methods and notations, one of
them OMT. Modeling information is stored in an object repository and accessed by textual and
graphical editors and an internal programming language. Paradigm Plus provides a structural
analysis facility called \import" that extracts information about classes directly from C++ header
�les.

More concretely we proceed as follows (see also Figure 2):

1. Each pattern is represented as a static OMT class diagram (see Figure 1). These diagrams
constitute the repository P (for \patterns").

2. A straightforward program P2prolog converts P into Prolog rules. The generated form is
one rule for each pattern, representing design properties that are necessary but not su�cient
to diagnose the pattern; see Section 3.2.

3. The structural analysis mechanism of Paradigm Plus extracts design information from C++

header �les and stores it in the repository in OMT form. The resulting part of the repository
is called D (for \design").

4. Another straightforward program D2prolog converts D into Prolog facts; see Section 3.1.

5. A Prolog query Q detects all instances of design patterns from P in the examined design
D. Duplicates of design patterns that often occur in the Prolog output are removed.
Manual postprocessing removes false positives; see Section 4.

Note that this approach searches for speci�c implementation forms of patterns, which are some-
times called design templates. Most design patterns can be implemented by several di�erent
design templates. Pat as presented in this article uses only one template per pattern, but
alternatives whose occurrence is expected could be added at will.

4



2.4 Implementation details

For the implementation we used Paradigm Plus 2.01 [15] and Visual Prolog 4.0 Beta (Profes-

sional Version) [14].

The programs P2prolog and D2prolog are written in the BASIC dialect provided by Paradigm

Plus and are executed directly by Paradigm Plus with direct access to its repository.

The resulting Prolog program performs the search and generates one output line per pattern
instance found. Each line has the form of a LATEX macro call such as
\adapter{Target}{Adapter}{Adaptee}

The pattern instance list is then �ltered for duplicates. Suitable LATEX macros convert the
resulting instances into graphical OMT form as shown above to provide a basis for a reverse-
engineered design document.

3 Prolog representation

3.1 Source code to Prolog mapping

We represent the relevant information of C++ header �les by Prolog facts. Implementation
�les need not be consulted. As an example, the class declaration

class zPane:public zChildWin {

zDisplay* curDisp;

/* ... */

public:

virtual void show(int=SW_SHOWNORMAL);

/* ... */

};

would result in these Prolog facts:

class(concrete, zPane).

inheritance (zChildWin, zPane).

association (zPane, zDisplay).

operation(virtual, zPane, show).

The following rules are applied for generating such facts:

Any class declaration of the form class C { declarations } results in a fact class(ca, C). ca
has the value concrete if there is at least one public constructor among the declarations and
abstract otherwise. Any class declaration of the form class C : B { declarations } results
in the same fact plus another fact inheritance(B, C), or multiple such facts if multiple base
classes are given. Paradigm Plus always treats inheritance as public.

A method declaration of the form virtual Resulttype Methodname(parameterlist) in the pub-
lic part of the class C results in a fact of the form operation(virtual, C, Methodname). If
the virtual modi�er is missing, normal is used instead of virtual. Abstract functions (called
\pure virtual" in C++) are also treated as virtual. If the static modi�er is used, no fact is
generated at all. Other method modi�ers are ignored.

A pointer or reference data member declaration of the form Typename *Membername or Type-
name &Membername for any named type Typename in any part of the class C results in a fact
of the form association(C, Typename). The same is true for pointers to pointers and so on.

5



A non-reference data member declaration of the form Typename Membername for any named
type Typename in any part of the class C results in a fact of the form aggregation(C, Type-

name, exactlyone). If the member explicitly is an array, i.e., the declaration has the form
Typename Membername[] or Typename Membername[constexpression], it results in a fact of
the form aggregation(C, Typename, many). The same is true for multidimensional arrays.
Paradigm Plus cannot detect associations or aggregations that are implemented by other than
the above means, for instance by container classes or temporarily by method parameters.

All other header �le content is ignored.

3.2 Patterns to Prolog mapping

The Prolog rule for each pattern gathers the facts required to diagnose a pattern instance.
As an example, see again the Adapter pattern in Figure 1. P2prolog converts this OMT class
diagram into the following Prolog rule:

adapter(Target,Adapter,Adaptee):-

class(_,Target),

class(concrete,Adapter),

class(concrete,Adaptee),

operation(virtual,Target,Request),

operation(_,Adapter,Request),

operation(_,Adaptee, SpecificRequest),

inheritance(Target,Adapter),

association(Adapter,Adaptee).

ThisProlog rule describes necessary but not su�cient properties of classes for forming one kind
of Adapter pattern instance. In addition, there may be multiple alternative rules for diagnosing
di�erent design templates representing the pattern.

The derivation of the Prolog rules is straightforward, except for the following cases: First,
classes that are abstract in the pattern are allowed to be either abstract or concrete in the
software. Methods that are abstract in the pattern are required to be virtual, but not necessarily
abstract (\pure virtual" in C++). Methods that are concrete in the pattern are allowed to be
either virtual or normal.

Second, call delegation is not modeled at all, as Paradigm Plus does not detect it. For instance
the Adapter pattern demands that there exists a delegation from a method Adapter::Request

to Adaptee::SpecificRequest. However, because Paradigm Plus cannot extract delegations,
the delegation must not be modeled in our Prolog rule or else the rule could never be matched.

Third, the client is not modeled because an Adapter is still an Adapter if it occurs stand-alone
without any actual client, e.g. in a library. Similar considerations apply for the Prolog rules
of the other design patterns.

Fourth, in patterns where there may be an arbitrary number of subclasses of a particular kind,
only one such class is modeled in the rule, because that is su�cient to detect the pattern. See
the Bridge, Composite, and Decorator patterns as examples.

Fifth, the actual names of classes, attributes, and methods are ignored.

Technically, the actual Prolog rules used in Pat have two additions over the ones shown here.
First, they contain local cuts (getbacktrack/cutbacktrack pairs) to restrict the rules to match

6



one method per operation clause and ignore the rest. Second, classes are checked for inequal-
ity with clauses like Adapter <> Adaptee etc. to avoid senseless matches and combinatorial
explosion.

Here are the Prolog representations of the other four structural design patterns. If you are not
familiar with these patterns, you may �rst want to read the short description of their purpose
at the end of section 5.

A Bridge consists of at least four classes: the abstract Abstraction superclass, one or several
Re�ned Abstraction subclasses, the abstract Implementor superclass, and one or several Con-
crete Implementor subclasses. Bridges can often be re-interpreted as instances of the Strategy

pattern and vice versa.

Abstraction

op ()

Re�nedAbstr

Impl

opImpl ()

ConcreteImpl

opImpl ()

��TT ��TT

��HHH
H��

-

imp

Figure 3: OMT diagram of the design pattern \Bridge"

bridge(Abstraction,RefinedAbstr,Impl,ConcreteImpl):-

class(_,Abstraction),

class(concrete,RefinedAbstr),

class(_,Impl),

class(concrete,ConcreteImpl),

operation(_,Abstraction,Op),

operation(virtual,Impl,OpImpl),

operation(_,ConcreteImpl,OpImpl),

inheritance(Abstraction,RefinedAbstr),

inheritance(Impl,ConcreteImpl),

aggregation(Abstraction,Impl,exactlyone).

This rule does not model the delegation from Abstraction::Op to Impl::OpImpl.

A Composite consists of at least three classes: the abstract Component superclass, one or
several Leaf subclasses, and one or several Composite subclasses.

composite(Component,Leaf,Composite):-

class(_,Component),

class(concrete,Leaf),

class(concrete,Composite),

operation(virtual,Component,Op),

operation(_,Leaf,Op),

7



Client Component

op()

add(Composite)

remove(Composite)

getChild(int)

-

Leaf

op()

Composite

op()
add(Composite)
remove(Composite)
getChild(int)

forall g in children
g.op();

��TT

��HHH
H��

u�

children

Figure 4: OMT diagram of the design pattern \Composite"

operation(_,Composite,Op),

operation(virtual,Component,Add),

operation(virtual,Component,Remove),

operation(virtual,Component,GetChild),

operation(_,Composite,Add),

operation(_,Composite,Remove),

operation(_,Composite,GetChild),

inheritance(Component,Leaf),

inheritance(Component,Composite),

aggregation(Composite,Component,many).

This rule ignores the fact that Composite::Op must have a loop of Op calls for all children.
The semantics of add, remove and getChild are also ignored, because no such information is
available. If several of the classes have many operations, the combinatorial explosion in the
operation clauses of this rule makes the rule impractical. We then actually drop all operation
clauses from the rule. As the method semantics are not checked anyway, this omission makes
rarely any di�erence.

ADecorator consists of at least four classes: the abstract Component top class with a Concrete
Component subclass and an abstract Decorator subclass; the latter has one or several further
subclasses called Concrete Decorators.

decorator(Component,ConcreteComp,Decorator,ConcreteDeco):-

class(_,Component),

class(concrete,ConcreteComp),

class(_,Decorator),

class(concrete,ConcreteDeco),

operation(virtual,Component,Op),

operation(_,ConcreteComp,Op),

operation(virtual,Decorator,Op),

8



op ()

ConcreteDeco

Decorator :: op (); . . .

op ()

ConcreteComp

op ()

Decorator

op ()

Component

comp ! op ()

��TT

��TT

��HHH
H��

�

comp

Figure 5: OMT diagram of the design pattern \Decorator"

operation(_,ConcreteDeco,Op),

inheritance(Component,ConcreteComp),

inheritance(Component,Decorator),

inheritance(Decorator,ConcreteDeco),

aggregation(Decorator,Component,exactlyone).

This rule ignores the delegations from Decorator::Op to Op of the decorator's aggregated com-
ponent and the implementation of ConcreteDeco::Op as a call to Decorator::Op plus some
decorator behavior.

A Proxy consists of three classes: a Real Subject class, its Proxy class and their abstract
Subject superclass.

proxy(Subject,RealSubject,Proxy):-

class(_,Subject),

class(concrete,RealSubject),

class(concrete,Proxy),

operation(virtual,Subject,Op),

operation(_,RealSubject,Op),

operation(_,Proxy,Op),

inheritance(Subject,RealSubject),

inheritance(Subject,Proxy),

association(Proxy,RealSubject).

This rule ignores the implementation of Proxy::Op as a delegation to RealSubject::Op plus
some proxy behavior.

9



op ()

RealSubject

op ()

Proxy

op ()

Subject

realSubj ! op ();
. . .

��TT

� realSubj

Figure 6: OMT diagram of the design pattern \Proxy"

4 Evaluation

Three questions arise, given a design recovery system such as Pat:

1. What fraction of pattern instances is found?

2. What fraction of the output consists of false positives (spurious instances)?

3. How useful is the output for actual program understanding and maintenance tasks?

We cannot answer the third question at this time, as it requires a rather costly empirical study;
a �rst experiment is described in Section 6, however.

We use the information retrieval measures called precision and recall [8] to answer the �rst two
questions.

Assume that Pat outputs P distinct pattern instance candidates. Assume further that the design
analyzed actually contains T true pattern instances that are implemented by one of the design
templates we search for and that F of these T are found by Pat. Then precision := F=P and
recall := F=T . Note that these numbers ignore pattern instances using design templates not
in our rule set. We also measured the execution time needed for the automatic search and the
time needed for human �ltering of the results to remove false positives.

4.1 The benchmarks

Four di�erent sets of classes were examined: Network Management Environment Browser
(NME), Library of E�cient Datatypes and Algorithms (LEDA 3.0, [10]), the zApp class library
(zApp, [9]), and Automatic Call Distribution (ACD). NME and ACD are telecommunication
software developed at Computec, the other two are widely used class libraries.

None of these four benchmarks included explicit design information; all data was extracted from
C++ header �les as described above. Table 1 characterizes the size of the benchmark applications

10



as found by the structural analysis step and as obtained from the D2prolog conversion. Except
for NME, the size of the benchmarks is considerable.

classes attrib. operat. aggr. assoc. inherit. kByte facts

NME 9 34 131 0 10 6 13
LEDA 150 501 4084 91 151 67 243
zApp 240 1176 3590 143 155 145 205
ACD 343 1506 2879 457 461 191 204

Table 1: Number of classes, attributes, operations, aggregations, associations, and inheritances

found by Paradigm Plus in each of the applications and size of the generated Prolog facts �le in

kByte.

4.2 Evaluation procedure and results

Each of the four resulting Prolog facts �les was used in a separate pattern search run. The
results are summarized in Table 2. For each application and for each design pattern the table
gives the number of pattern instances found by the search mechanism (\found") and the number
of these that were not spurious (\true"). Below are total recall and precision values over all
patterns and the runtime in seconds taken by the Prolog program. As for the runtimes, the
structural analysis and D2prolog steps take up to two hours, i.e., much longer than the actual
pattern search.

NME LEDA zApp ACD
found true found true found true found true

Adapter 2 1 1 0 20 �12 150 �69
Bridge 0 0 59 �10 7 0 0 0
Composite 0 0 6 0 0 0 0 0
Decorator 0 0 3 0 0 0 0 0
Proxy 0 0 1 0 1 0 17 0

Recall 100% �100%? 100% �100%?
Precision 50% �14% �43% �41%
Prec. w. deleg. 100% �53% 100% 100%

Runtime 1 sec 2 sec 3 sec 36 sec

Table 2: Number of pattern instances found by Pat and approximate number of true instances,

resulting recall, precision, and Prolog runtimes measured on a PCI-Bus PC with Pentium P133

and 32 MByte RAM under Windows 95.

Recall: Obviously, when computing recall, structurally di�erent alternative implementations
of the patterns have to be taken out of account, as Pat cannot possibly �nd them in the given
setup, but would �nd them with appropriate additional rules. Given this restriction, how high
is Pat's recall? Except for NME, we had no de�nitive information about the set of patterns
actually used in the programs. However, for NME we know and for zApp we believe, judging
from the documentation, that Pat achieved full recall. In LEDA and ACD recall is unknown,
because Pat may have missed some patterns for the following reason.

The recognition of a pattern may fail (only) due to an undetected aggregation. An aggregation

11



will go undetected if either (1) it looks like an association or (2) it is completely hidden due
to the use of a container type for its implementation, such as a Vector or Bag class. We have
checked1 that case (1) does not lead to any undetected pattern, but case (2) may have occurred.
Even so, case (2) is probably relevant only for the Composite pattern, as it is the only one that
requires an aggregation of multiple objects. Thus, recall is most probably close to 100 percent
even for LEDA and ACD.

Precision: Because our pattern rules do not represent su�cient conditions for pattern instances,
precision is not perfect. Some constructions will lack required (but unchecked) properties, yet
be returned, incorrectly, as pattern instances.

How does one decide what is such a false positive and what is a true pattern instance? We took
the following approach: (1) In many cases false positives are obvious when the class and method
names clearly indicate unrelated classes. (2) In other cases correct pattern instances are obvious
via class and method names indicating the semantics required by the pattern. In the remaining
cases, the pattern instance has to be checked by manually consulting (3) available documentation
or (4) source code. It turns out that plausibility checks of pattern instance candidates can often
be done quite rapidly using only methods (1) through (3). We applied methods (1) and (2) for
all projects and also method (3) for LEDA and zApp. We did not check source code at all.

Our evaluation approach implies that the precision values in Table 2 are approximations. The
line labeled `precision' in Table 2 gives the precision values that result directly from dividing
`true' by `found'. The line labeled `prec. deleg.' shows precision values that would result if
Paradigm Plus were able to detect all simple call delegations and our pattern rules contained
checks for them, making most of the false positives disappear | all spurious Adapters and
Bridges lack the correct delegations. The following sections discuss additional aspects of interest
for each of the four benchmarks.

NME: The original designer of the software con�rmed that Pat found one true and one spurious
Adapter. The spurious Adapter would have been rejected had delegations been checked.

LEDA: We decided which of the pattern instances to consider correct by consulting the LEDA
manual. This work took about one hour for a programmer without prior knowledge of LEDA.
56 of the 59 Bridges occur because each of the 8 classes circle, line, p dictionary, point,

polygon, real, segment, string (all subclasses of handle base) seems to form a Bridge with
each of the 7 classes circle rep, line rep, point rep, polygon rep, rrep, segment rep,
and string rep (all subclasses of handle rep). If Pat could check for the correct delegations,
only the correct 7 of these 56 pairs should remain. The 6 false Composites were found by a
relaxed rule (without operation clauses) as described in Section 3.2.

zApp: The evaluation of the output for zApp was also done with the manual. This work took
one hour. All of the false positives could have been suppressed by checking for correct delegations
in the Adapter candidates. Surprisingly, there is neither a Composite nor a Decorator in zApp,
although it is a GUI library. But zApp does indeed not use the Composite concept of handling
containers and basic components in the same way nor the Decorator concept of transparently
attaching additional functionality to an object.

ACD is a large project and created so much output that we were unable to check correctness
completely. Instead, we relied on conservative common sense judgement from the class names

1The check was made by re-running all four experiments with an additional rule that allowed to interpret

any association as an aggregation. This led to more than twice as much output, none of which contained any

additional pattern instances.

12



combined with another plausibility check: In the case of the Adapters we assumed that exactly
those are correct where the name of Request is similar to the name of SpecificRequest. In
the case of proxies we drew conclusions from the class names alone; no Proxy seems to be in
ACD. Evaluating the solutions for ACD in this manner took 30 minutes.

5 Design alternatives

While Pat performs quite well, there are other ways of recovering design patterns from code. In
this section, we discuss and relate the fundamentally di�erent approaches. Basically, there are
three kinds of information to identify design pattern instances.

First, information on declarations and the \uses"-relation can be extracted using basic compiler
techniques (scanning, parsing, name resolution). This is the approach used by the Pat system
and allows to rely on CASE tool functionality. Such information can be used for �nding struc-
tural matches. Structural comparison is insu�cient for �nding those design patterns that rely
on particular behavior of methods (behavioral patterns). It is su�cient, however, for design
patterns that rely mostly on static aspects of software composition (structural patterns).

Second, the semantics of the program can be partially analyzed using advanced compiler and
program analysis techniques (interprocedural data dependence and data 
ow analysis, alias
analysis etc.). In principle, semantic information could identify instances of behavioral patterns,
not only structural patterns. However, there are two problems. (1) As program semantics are
in general not computable, the analysis techniques will consist of complex heuristics that make
the search program di�cult to create and extend, make it dependent on programming style,
and make its performance unpredictable. (2) Some of the concepts underlying design patterns
are vague (for instance \call delegation"). Therefore, whichever heuristic formalization is used,
counterintuitive results may occur. Furthermore, C++ is notoriously di�cult to analyze, due to
its weird syntax, overly complex semantics, and the preprocessor. This approach exhibits more
of the complexity of general program understanding and may produce less leverage from the
speci�city of design patterns.

Third, the names of classes, methods, and attributes expected in a particular design pattern
could be matched against software using a heuristic abbreviation recognizer and thesaurus etc.
For some programs, names may provide a useful shortcut to program semantics so that heuristic
name analysis could be a useful complement to the above techniques. In particular, name
analysis would work best for behavioral aspects of the program. However, name analysis is
inherently unreliable and extremely sensitive to the naming conventions used, if any. Therefore,
it might make performance even more unpredictable.

We chose to use only the �rst approach, which achieves the maximum ratio of performance to
construction e�ort. It results in a simple, e�cient, and relatively robust system. In particular, we
can use commercially available building blocks for the analysis and deduction parts, thus further
reducing the complexity and increasing the quality of the implementation. This architecture
limits the covered set of design patterns to structural patterns; behavioral patterns cannot be
found this way.

However, such a reduced search space is still useful. From a reverse engineering point of view,
�nding instances of these patterns yields the following information. Adapter instances signal
where classes are used in multiple contexts, requiring di�erent interfaces. Bridge instances show
where the interface and the implementation of a module are encapsulated in separate classes, so

13



that both can be changed independently; Bridges indicate reuse or places where much change
is expected. Bridges may also indicate instances of the closely related Strategy pattern, which
allows changing the implementation of an operation at run time. Composite and Decorator
instances signal easily extensible areas of a program where collections of components or extended
versions of components are handled like basic components alone. Proxy instances indicate where
a surrogate of a (very large?) object was used instead of the object itself or where functionality
was added to an object transparently, for example �rewall, encryption, or cacheing functionality.

Nevertheless from the reverse engineering point of view, it is clearly desirable to extend the
scope of the pattern search. Semantic information and name analysis may both be viable and
useful means for recovering behavioral design patterns and should be pursued in further work.

6 Related work

As discussed above, Pat does not strive for detailed program understanding or general design re-
covery as some other advanced work in reverse engineering does, for instance that of Biggersta�,
Mitbander, and Webster [2, 3] or the classical work of Rich and Waters [16]. In those cases, a
wide gap has to be closed from the syntactic representation of the program (and maybe other
artifacts) to the understanding of semantics and pragmatics. When searching for structural de-
sign patterns, this gap is much smaller for three reasons. First, the rich syntax of object-oriented
languages contains much information about architectural features of design patterns, such as
inheritance relations, associations and aggregations. We do not attempt to analyze software
in non-oo languages. Second, the semantics of a structural design pattern are closely coupled
to its syntactic representation and therefore easy to recognize (except for the problem of false
positives, see Section 4). Third, a small set of possible pragmatic intentions is packaged in the
description of a design pattern. Therefore, structural design patterns allow for inferring program
pragmatics from syntactic source code features with simple machine deduction and a modest
amount of additional interpretation by the user. In particular, design pattern search, at least
for structural patterns, does not call for automatic concept assignment and the output is useful
without a domain model. For these reasons we �nd it worthwhile to investigate the leverage
that can be gained from design patterns in program understanding, using much simpler program
analysis techniques than were required previously; searching for structural design patterns has
a good price/performance ratio.

Design patterns are a young �eld and currently they are mostly used for understanding and
communicating during the invention of designs. Work is also beginning towards creating tool
support for handling design pattern instances as explicit design and program entities. Such
tools can be focused on patterns [4] or incorporate patterns within a broader perspective [6]. In
the far future, programs constructed with such tools may make design pattern recovery much
easier, because they can reliably document pattern instances created in the code. The tool of [6]
also supports semi-automatic reverse engineering of non-documented pattern instances. Forward
engineering using patterns is particularly popular in the context of component architectures [11].

Several pattern practitioners [1] agree that one of the largest bene�ts of design patterns is their
use as a means of communication and understanding. This observation suggests that �nding
patterns in existing designs should make understanding these designs easier.

The conservative, controlled experiment mentioned above has recently corroborated this as-
sumption [12, 13]. Two groups of subjects received the same program and were asked to outline

14



how they would make a certain program change. The program for one of the groups had its
design patterns documented in addition to thorough, conventional program documentation. For
the other group, the pattern documentation was missing. The experiment was repeated with
two di�erent programs in a counterbalanced design. For one program, the solutions of both
groups were of similar quality, but the group with pattern documentation �nished signi�cantly
faster. For the other program, the group with pattern documentation produced a completely
correct solution twice as often as the group without pattern documentation.

7 Conclusion

Automated search for instances of structural design patterns can be implemented by a rather
simple software architecture, Pat. The key to this simpli�cation is building on structural analysis
capabilities of a commercial ooCASE tool and the search capabilities of Prolog, thereby making
the implementation small, reliable, and e�cient. The approach restricts the search capabilities
to structural (as opposed to behavioral) design patterns, but exhibits an extremely good e�ort
to performance ratio.

Often all design pattern instances within the system's search space are recovered from the
C++ source code. In addition, the Pat output contains a number of false positives. In our four
benchmark applications, detection precision is between 14 and 50 percent. Overall, this precision
is acceptable. The remaining false positives can be sorted out with a modest amount of manual
work (typically a few minutes per resulting pattern instance). We conclude that our approach
is a fast and simple partial solution to recovering design pattern information from source code.

Automatic detection of design pattern instances is probably a useful aid for maintenance pur-
poses | for quickly �nding places where extensions and changes are most easily applied. How
useful automatic pattern �nding is should be the subject of further study.

Further work should also explore how name analysis and/or semantic analysis can be employed
to detect behavioral patterns in addition to structural ones.

References

[1] K. Beck, J.O. Coplien, R. Crocker, L. Dominick, G. Meszaros, F. Paulisch, and J. Vlissides.
Industrial experience with design patterns. In 18th Intl. Conf. on Software Engineering,
pages 103{114, Berlin, March 1996. IEEE CS press.

[2] Ted J. Biggersta�. Design recovery for maintenance and reuse. IEEE Computer, 22(7):36{
49, July 1989.

[3] Ted J. Biggersta�, Bharat G. Mitbander, and Dallas E. Webster. Program understanding
and the concept assignment problem. Communications of the ACM, 37(5):72{83, May 1994.

[4] F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and P. S. Yu. Automatic code generation
from design patterns. IBM Systems Journal, 35(2):., . 1996.

[5] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.
Pattern-Oriented Software Architecture | A System of Patterns. John Wiley and Sons,
Chichester, UK, 1996.

15



[6] Gert Florijn, Marco Meijers, and Pieter van Winsen. Tool support for object-oriented pat-
terns. In Mehmet Aksit, editor, 11th European Conference on Object-Oriented Programming

(ECOOP), LNCS 1241, page ., Jyv�askyl�a, Finland, June 1997. Springer Verlag.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Ele-

ments of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

[8] H.S. Heaps. Information Retrieval. Academic Press, 1978.

[9] Inmark Development Corporation, Mountain View, CA. zApp Programmer's Guide, 1994.

[10] Stefan N�aher. LEDA User Manual Version 3.0. Fachbereich Informatik, Universit�at des
Saarlandes, Saarbr�ucken, Germany, 1992.

[11] Oscar Nierstrasz and Theo Dirk Meijler. Research directions in software composition. ACM
Computing Surveys, 27(2):262{264, June 1995.

[12] Lutz Prechelt. An experiment on the usefulness of design patterns: Detailed description
and evaluation. Technical Report 9/1997, Fakult�at f�ur Informatik, Universit�at Karlsruhe,
Germany, June 1997. ftp.ira.uka.de.

[13] Lutz Prechelt, Barbara Unger, Michael Philippsen, and Walter F. Tichy. Two
controlled experiments assessing the usefulness of design pattern information during
program maintenance. Empirical Software Engineering, .(.):., . 1998. Submitted.
http://wwwipd.ira.uka.de/~prechelt/Biblio/.

[14] Prolog Development Center, Br�ndby, Denmark. Visual Prolog 4.0 (Professional Version),
1996.

[15] ProtoSoft Inc., Houston, TX. Paradigm Plus 2.01 Reference Manual, 1994.

[16] Charles Rich and Richard C. Waters. The Programmer's Apprentice. Frontier Series. acm
press, Addison-Wesley, New York, NY, Reading, MA, 1990.

[17] James Rumbaugh. Object-Oriented Modeling and Design. Prentice-Hall, Englewood Cli�s,
NJ, 1991.

16


