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sequence. The weights in the parallel networks are trainedhe viewing point., e.g., moving towards left and right, for-
by backpropagation. There are 15 hidden units in both sub-ward and backward, up and down. But it is more natural to
nets. The combination weights are computed dynamically control the panning and tilting with the gaze, and the zoom-
during recognition to reflect the estimated reliability of each ing with the voice. We have developed an interface to con-
modality: trol a panoramic image viewer by combining the gaze
tracker with a speech recognizer (Stiefelhagen and Yang,
hypay = AVhyR, +A\nyp, ©) 1997). With such an interface, a user can fully control the
panoramic image viewer without using his/her hands. The
S\/ - SA user can scroll through the panoramic images by looking to
A— (10) the left and right or up and down, and he can control the
S\/IaxOverData zoom by speaking the commands “zoom in,” “zoom in two
times,” “zoom out” “zoom out five times,” etc. Figure 8
Ay = 1=A (11)  shows how the system works.

Ay = b+

The entropy quantities ,.Sand § are computed for the

acoustic and visual activations by normalizing these to sum
to one (over all phonemes or visemes, respectively) and
treating them as probability mass functions. High entropy is
found when activations are evenly spread over the units
which indicates high ambiguity of the decision from that
particular modality. The biab pre-skews the weight in
favor of one of the modalities. This bias is set depending on
the signal-to-noise ratio (SNR). The quality of the speech ) o ]
data is generally well described by the SNR. Higher SNR Figure 8. Gaze-voice controlled panoramic image viewer
means higher quality of the acoustic data and therefore thegeamforming by Face Tracking

consideration of the acoustic side should increase for hlg_herA one-dimensional microphone array allows the speech sig-
SNR-values and decrease for smaller ones. We used a piec

el X di bias b ¢ . £ th fial to be received in the half plane in front of the array. If
‘é";\?g ('K'Aee"’i‘érme?gﬁ'?ggtg)_a Just bias b as a function of thehe array s steered towards a given spot the differences of

sound arrival time between the microphones are compen-
The system uses the gray-scale images of the lip region agsated for waves originating exactly from this location. By
inputs. Adaptive gray value modification is used to elimi- summing these aligned signals one achieves an enhance-
nate different lightning conditions (Meier et al. 1997). For ment of the desired signal while sound coming from other

acoustic preprocessing 16 melscale coefficients are used. locations is not in the same phase and thus its audibility is
deteriorated. On the other hand, if the system knows the

Table 2: Speaker Dependent Results speaker’s location from visual tracking, it is possible to
form a beam to select the desired sound source to enhance
Test Set visual only | acoustic only  combined the quality of speech signal for speech recognition. We have
demonstrated that a more accurate localization in space can
clean 55% 98.4% 99.5% be delivered visually than acoustically. Given a reliable fix,

beamforming substantially improves recognition accuracy

16dB SNR 55% 56.9% 73.4% .
’ i ’ (Bub et al., 1995). Figure 9 shows the setup of the system.
8 dB SNR 55% 36.2% 66.5%
Experimental Results

We have trained a speaker dependent recognizer on 170
sequences of acoustic/visual data, and tested on 30
sequences. For testing we also added white noise to the test
set. The results are shown in table 2, as performance mea-
sure word accuracy is used (where a spelled letter is consid-
ered a word).

With our system we get an error reduction up to 50% com-
pared with the acoustic recognition rate.

Panoramic Image Viewer Figure 9. Setup of microphone array and face tracker

A panoramic image provides a wide angle view of a scene.CONCLUSION

In order to view a 360 degree panoramic image, we need tdn this paper we have described real-time visual tracking
use a special viewer. In a panoramic image viewer, we needechniques and their applications to multimodal human
to control three parameters: pan, tilt, and zoom. The currentcomputer interaction. We described how to track human
interface uses keyboard and mouse to control them. Alternafaces and features in real-time. We demonstrated that sys-
tively, we could control them by changing the positions of tems that combine visual information other communication



positions of the lip corners can be found in the next step.as few as 4 correspondences of non-coplanar points. Since
Figure 5 shows the two search windows for the points onwe can locate and track six non-coplanar facial features
the line between the lips. The two white lines mark the (eyes, lips and nostrils) we can compute the head pose. The
search paths along the darkest paths, starting from where theurrent system has achieved a rate of 15 frames/second on a
darkest pixel in the search windows have been found. Thdow-end work station (Stiefelhagen et al., 1996).

found corners are marked with small boxes. APPLICATIONS TO MULTIMODAL HCI

Human-human communication takes advantage of many
communication channels. We use verbal and non-verbal
channels. We speak, point, gesture, write, use facial expres-
sions, head motion, and eye contact. However, most of cur-
rent multimodal human computer interfaces have been

: focused on integration of speech, handwriting and pen ges-
Figure 5. Search for lip corners along the line between the tures. In fact, visual information can play an important role

lips in multimodal human computer interaction. We present
_ ) three examples of multimodal interfaces that include visual
Tracking Nostrils information as a modality in this section.

Tracking the nostrils is also done by iteratively thresholding _

the search-region and looking for ‘legal’ blobs. But whereas Lip-reading o _ _ _

we have to search for a relatively large area in the initial It is well known that hearing impaired listeners and listen-
search, during tracking, the search-window can be posi-ing in adverse acoustic environments rely heavily on visual
tioned around the previous positions of the nostrils, and caninput to disambiguate among acoustically confusable
be much smaller. Furthermore, the initial threshold can bespeech elements. It has been demonstrated that visual infor-
initialized with a value that is a little lower than the intensity mation can enhance the accuracy of speech recognition.

of the nostrils in the previous frame. This limits the number However, many current lip-reading systems require users to
of necessary iterations to a small value. keep still or put special marks on their faces. We have

developed a lip-reading system based on the face tracker.

However, both nostrils are not always visible in the image. The system first locates the face and then extracts the lip
For example, when the head is rotated strongly to the right,egions as shown in Figure 7.

the right nostril will disappear, and only the left one will
remain visible. To deal with this problem, the search for two
nostrils is done only for a certain number of iterations. If no
nostril-pair is found, then only one nostril is searched for by
looking for the darkest pixel in the search window for the
nostrils.

To decide which of the two nostrils was found, we choose
the nostril, that leads to the pose which implies smoother
motion of the head compared to the pose obtained choosing
the other nostril. Figure 7. Basic idea of lip tracking

Gaze Tracking System Description

The locations of facial features can be used to estimate thehe system is based on a modular MS-TDNN (Multi-State
person’s gaze direction, or head pose, using a 3D modeflime Delay Neural Network) structure (Meier et al. 1996).
(Stiefelhagen et al., 1996). The visual and acoustic TDNNs are trained separately, and
visual and acoustic information are combined at the pho-
netic level. The system has been applied to the task of
speaker-dependent continuous spelling German letters. Let-

camera image lips

feature pose ter sequences of arbitrary length and content are spelled
tracking ) estimation without pauses. Words in our database are 8 letters long on
— = — - average. The task is thus equivalent to continuous recogni-
b tion with small but highly confusable vocabulary.
image plane 3D model real world Through the first three layers (input-hidden-phoneme/

viseme) the acoustic and visual inputs are processed sepa-
rately. The third layer produces activations for 62 phoneme
or 42 viseme states for acoustic and visual data, respec-
tively. A viseme, the rough visual correlate of a phoneme, is
The basic idea is to estimate the head pose by finding correthe smallest visually distinguishable unit of speech.
spondences between a number of head model points antVeighted sums of the phoneme and corresponding viseme
their locations in the camera image as shown in Figure 6.activations are entered in the combined layer and a one
DeMenthon & Davis (DeMenthon and Davis, 1992) devel- stage DTW algorithm finds the optimal path through the
oped an algorithm for estimating 3D pose of an object usingcombined states that decodes the recognized letter

Figure 6. Gaze tracking as feature tracking + pose estima-
tion



speaker and select the region surrounding the facial area by

a window. The window size is adjustable based on network]
bandwidth. When network traffic is good, the window is the
entire image. When the network bandwidth is not enough,

the window size is shrunk, and even the image is converte
to grey scale. We have developed a system (Yang et al., ko =30 ko =32 ko =34
1996) by adding the face tracker on the top of vic, a public

domain available tele-conference software. The system carFigure 4. Iterative thresholding of the eye region
provide several filtering schemes such pseudo-cropping,
slicing, and blurring. Figure 3 shows how these filtering
schemes work.

Searching For Lip Corners

First, the approximate positions of the lip corners are pre-

dicted, using the positions of the eyes, the face-model and
the assumption, that we have a near-frontal view. A gener-

ously big area around those points is extracted and used for
further search.

Finding the vertical position of the line between the lips is
done by using a horizontal integral projectiBp of the
grey-scale-image in the search-region. Because the lip line
is the darkest horizontally extended structure in the search
area, its vertical position can be located whegehas its
global minimum. The horizontal boundaries of the lips can
be found by applying a horizontal edge detector to the
refined search area and regarding the vertical integral pro-
jection of this horizontal edge image. The positions of the
lip corners can be found by looking for the darkest pixel
along the two columns in the search area located at the hori-
zontal boundaries.

= . | —

(©

Searching For Nostrils
Figure 3. Different filtering schemes: (a) original; Similarly to searching for the eyes, the nostrils can be found

(b) pseudo-cropping; (c) slicing; (d) blurring by searching for two dark regions, that satisfy certain geo-
metric constraints. Here the search-region is restricted to an
SEARCHING AND TRACKING FACIAL FEATURES area below the eyes and above the lips. Again, iterative

The face tracker can also be used as a base for other applicéhresholding is used to find a pair of legal dark regions, that
tions. Once a face is located, it is much easier to locate otheare considered as the nostrils.

features such as pupils, lips and nostrils. This top-down . .
approach works very well for many applications. In this sec- Tracking Faual_ Features

tion, we show how fo track these facial features in real-time ONCe the facial features are located, the problems become
and use them to estimate human gaze direction (Stiefel2cKing those features.

hagen et al., 1996). Tracking Eyes

To track the eyes, simple darkest pixel finding in the pre-

Locating Facial Features - : o .
g edlcted search-windows around the last positions is used.

We first describe methods to locate and track the pupils, th

lip corners and the nostrils within a found face. Tracking Lip Corners
_ ) Our approach to track the lip-corners consists of the follow-
Searching For Pupils ing steps:

Assuming a frontal view of the face initially, we can search o . .
for the pupils by looking for two dark regions that satisfy 1. Sgarch for 'Fhe darkest pixel in a search-region right pf the
certain geometric constraints and lie within a certain area ofPredicted position of the left corner and left of the predicted

the face. For a given situation, these dark regions can bé_)osition of the right corner. The found points will lie on the
located by applying a fixed threshold to the gray-scale line between the lips.

image. However, the threshold value may change for differ- search for the darkest path along the lip-line for a certain

ent people and lighting conditions. To use the thresholdinggistanced to the left and right respectively, and choose posi-
method under changing lighting conditions, we developed tjons with maximum contrast along the search-path as lip-
an iterative thresholding algorithm. The algorithm itera- -orers.

tively thresholds the image until a pair of regions that satis-

fies the geometric constraints can be found. Because the shadow between the upper and lower lip is the
darkest region in the lip-area, the search for the darkest

Figure 4 shows the iterative thresholding of the search win-pixel in the search windows near the predicted lip corners

dow for the eyes with thresholds After three iterations,  ensures that even with a bad prediction of the lip corners, a

both pupils are found. point on the line between the lips is found. Then the true



to transform the previous developed color model into the N

new environment, Because the Gaussian model only has a c‘© = 1 Z (X —=%) (}—%)"+ Exk—ﬂ(o) %xk—ﬁ(o)%
few parameters, it is possible to update them in real-time. Nk: 1

One way to adapt these parameters is to use a linear combi-

nation of the known parameters to predict the new parame- <0 _

r
~(0) _ (0)
ters. The underlying theory is that a linear combination of D USSP =trSC, 2
Gaussian distributions is still a Gaussian distribution. k=1 i=0
; 2. Iteration
ﬁ = Z aimi’ (4) r 1 (I) 1 (I) r ()
H Ay ~ ISy N [
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Wherefi andx are updated mean and covariance, 18 and
are the previous mean and covariarece, [And are coeffi-
cients.
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Based on the identification of the skin-color distribution at 3 |f max (Bj(i)- Bj(i-1)) <& for a small numbet > 0, stop;
each sampling point, we can obtain its mean vector andotherwise continue

covariance matrix. Then the problem becomes an optimiza-

tion problem. We can use the maximum likelihood criterion Tracking Human Face in Real-time

to obtain the best set of coefficients for the prediction. We A direct application of the skin-color model is to locate a
have investigated adapting the mean only, and adapting botliace in an image. A straightforward way to locate a face is
the mean and covariance matrix (Yang et al., 1997). to match the model with the input image to find the face
color clusters. Each pixel of the original image is converted

Adapting Mean _ o into the chromatic color space and then compared with the
In this case, the covariance matrix is assumed to be a congjstribution of the skin-color model. Since the skin colors

stant and the mean Veclﬂ)is assumed to be alil’leal’ Combi' occur in a Sma” area Of the Chromatic C0|Or Space, the

nation of the previous mean vectors: matching process is very fast. This is useful for real-time
face tracking. By combining the adaptive skin color model
) with the motion model and the camera model, we have
developed a real-time face tracker (Yang and Waibel, 1995).
The system has achieved a rate of 30+ frames/second with
By setting the derivatives of the likelihood function with 305 X 229 input sequences of images on both HP and Alpha
respecttax  to 0, we can obtain linear equations for solvingWorkstations. The system can track a person’s face while the
person walks, jumps, sits and rises. The QuickTime movies
of demo sequences in different situations and on different
) subjects can be found on the web site http://
Z mj'Z_lmkdk - mj’z_lx, j=1..r @) www.is.cs.cmu.edu/ISL.multimodal.face.html.

r
Q:Z(ximi, S=3
i=0

a:

k=1 Application to Tele-conference
An immediate application of the face tracker is to use it to

Adapting mean and Covariance automatically follow the speaker in a tele-conference. We

In this case, the both mean vector covariance matrix aréjescripe a more interesting application in this subsection.
assumed to be a linear combination:

In a tele-conference, the quality of the conference greatly
A . ' depends on image transmission. The bottle neck of the traf-
=5 om 2= 5 BS (8 fic is in the network. People have been working very hard
[ i=0 on data compression techniques to reduce data transmission.
However, there is a limitation on compression. In such a
case, if we want to continue the conference, we have to dis-
card some data. One way to do this is to skip some frames,
which may result in losing important information. We want
Algorithm to keep the important information and discard relative
1. Initialization unimportant data. To achieve this goal, we can add a selec-
tive function on the top of original codec to select the
r . (0 () r © important information. Ina tele—conference, the speaker is
Z m'ma, = m'x T = Z a,m, the center, We would like to keep updating speaker’s infor-
k=1 =0 mation. Then, we could use the face tracker to track the

In this case, there is no simple analytic solution available.
An EM algorithm has been used to iteratively estimate
parameters (Yang et al., 1997):



b, tion under changing lighting conditions. By closely
- == ==. (1) investigating the face color cluster, we have discovered that
the distribution has a regular shape. By comparing the shape

They have the same color but different brightness. They carPf skin-color distributions with a bivariate normal distribu-
be mapped onto the same point through the color normalizafion, we conclude that it is possible to use a bivariate normal

tion (Wyszecki and Styles, 1982): distribution to characterize the skin-color distributions.
r=R/(R+G+B), 2 Goodness-of-fit Tests
Unlike most of the methods used in engineering statistics
g=G/(R+G+B). (3)  which assume a normal distribution of the measured data,

) 3 2 ; we have examined whether the measured data of a sample
In fact, (2) and (3) define B -> R mapping. the color do indeed have a normal distribution by goodness-of-fit

Ellue is redundant after the normalization becaugg-b techniques (Yang et al., 1997). Goodness-of-fit techniques
i examine how well a set of sample data matches with a given
Table 1: C . f d vari distribution as its population. The methods of performing a
able 1. Lomparison of mean and variance goodness-of-fit test can be an analytic or graphic approach.
In the graphic approach, the most common method is Q-Q

RGB Space rg Space plot. We use this method to test our skin-color distributions.
Mean M = 234.29 1 = my =94.22 The basic idea of the Q-Q plot is to use the cumulative prob-
165,721 = 1511 Mg = 81.59 ability of the sampling data against that of the tested distri-

Variance O = 26.77 0, =4.93 bution. A straight line indicates that we cannot reject the

oG = 30.41 0g=3.89 null hypothesis. We have tested marginal distributions and

0Op = 25.68 bivariate distribution. When we do marginal test, we test

each variable separately against the normal distribution.

Another advantage of the color normalization is, we found WWhen we test the bivariate distribution, we test the trans-
out, that the color variance can be greatly reduced after thgor_med variable against Ch|-sqL_Jare distribution. We have
normalization. The same skin color cluster has a smallerPUilt up a database which contains about 1000 face images
variance in the normalized color space than that in an RGBdoWn-loaded from the Internet and taken from our labora-
space. Skin-colors of different people are less variant in thelOrY- This database covers face images of people in different
normalized color space. This result is significant because itf@ces (Caucasian, African American, and Asian), genders,
provides evidence of the possibility of modeling human and the I|ght|ng conditions. Using this de'ltabase,'we tested
faces with different color appearances in the chromaticthe following NULL hypothesishuman skin-color is nor-
color space. Table 1 shows mean values and variances of ti@ally distributed in a normalized bivariate spacéhe
same skin color cluster in different color spaces. Obviously, '€Sults indicate that we cannot reject the null hypothesis
the variances are much smaller in the normalized color(Yang etal., 1997).
space. Skin Color Adaptation
Although under a certain environment the skin-color distri-
bution of each individual is a multivariate normal distribu-
tion, the parameters of the distribution for different people
and different lighting conditions are different. A number of
viewing factors, such as light sources, background colors,
luminance levels, and media, impact greatly on the change
in color appearance of an image. Most color-based systems
are sensitive to changes in viewing environment. Even
under the same lighting conditions, background colors such
as colored clothes may influence skin-color appearance.
Figure 2. Skin-color distribution of the image in Figure 1 in Furthermore, if a person is moving, the apparent skin-colors
the normalized color space change as the person’s position relative to camera or light
changes. Therefore, the ability of handling lighting changes
is the key to success for a skin-color model.

(a) Global view (b) Local view

Skin Color Distribution
We have so far revealed that human skin-colors cluster inThere are two schools of philosophy to handle environment
the color space and are less variant in the chromatic colocchanges: tolerating and adapting. The most common
space. We are further interested in the representation of th@pproach for tolerating lighting changes is Color constancy.
skin-color distributions. Since we are investigating the skin- Color constancy refers to the ability to identify a surface as
color distributions in a bivariate normalized color space, it having the same color under considerably different viewing

is convenient to examine them graphically. Figure 2 showsconditions. Although human beings have such ability, the
the skin color distribution of the image in Figure 1. We have underlying mechanism is still unclear. A few color con-
found that the shape of the skin-color distribution of a per- stancy theories have demonstrated success on real images
son remains similar although there is a shift in the distribu- (Forsyth, 1990). On the other hand, the adaptive approach is



Facial features, such as the eyes, nose and mouth, are natunabdel includes finding clusters, extracting features (dimen-
candidates for locating human faces. These features, howsionality reduction), and determining a distribution. In order
ever, may change from time to time. Occlusion and non-o investigate all these problems, we need a large amount of
rigidity are basic problems with these features. Four basidata. We have built up a database which contains about
techniques are commonly used for dealing with feature vari-1000 face images downloaded from the Internet and taken
ations: correlation templates (Brunelli and Poggio, 1993;from our laboratory. This database covers different races
Pentland et al., 1994), deformable templates (Yuille et al(Caucasian, Asian, African American) and different lighting
1992), spatial image invariants (Sinha, 1994), and neuratonditions.

networks (Sung and Poggio, 1994; Rowley et al., 1995).

These methods are computation expensive and hardlgkin Color Cluster

achieve real-time performance. Several systems of locatin _ . o :
the human face have been reported. Eigenfaces, obtained %6‘:0'” histogram is a distribution of colors in the color
performing a principal component analysis on a set of facessP2c€ and has long been used by the computer vision com-
have been used to identify faces (Turk and Pentland, 1991{nunity in image understanding. For example, analysis of
Sung and Poggio (1994) reported a face detection systeff?!o" histograms has been a key tool in applying physics-

based on clustering techniques. The system passes a smaftSéd models to computer vision. In the mid-1980s, it was
window over all portions of the image, and determines€cognized that the color histogram for a single inhomoge-

whether a face exists in each window. A similar system with'€0Us surface with highlights will have a planar distribution

better results has been claimed by Rowley et al. (1995).  In color space (Shafer, 1984). It has since been shown that
the colors do not fall randomly in a plane, but form clusters

A different approach for locating and tracking faces usingat specific points (Klinker et al., 1987). The histograms of
skin-colors is described in (Hunke and Waibel, 1994; Changhuman skin color coincide with these observations. Figure 1
et al., 1994; Yang and Waibel, 1995; Oliver et al. 1997).shows a face image and the skin-color occurrences in the
Color has been long used for recognition and segmentatioRGB color space (256x256x256). The skin-colors are clus-
(Ohta et al., 1980;Swain and Ballard, 1991). Using skin-tered in a small area in the RGB color space, i.e., only a few
color as a feature for tracking a face has several advantagesf. all possible colors actually occur in a human face.
Processing color is much faster than processing other facial
features. Under certain lighting conditions, color is orienta-
tion invariant. This property makes motion estimation much
easier because only a translation model is needed for motion
estimation. However, color is not a physical phenomenon. It
is a perceptual phenomenon that is related to the spectral
characteristics of electro-magnetic radiation in the visible
wavelengths striking the retina (Wyszecki and Styles, 1982).
Thus, tracking human faces using color as a feature has sev-
eral problems. First, different cameras may generate differFigure 1. An example of a face image and the skin-color
ent colors even for the same person under the same lighting occurrences in the RGB space

condition. Second, different people have different color

appearances. Finally, the color appearance of the same papimensionality Reduction

son may differ under different environmental conditions. In

order to use color as a feature for face tracking, we have t§ 1S Well known that different people have different skin-
deal with these problems. color appearances. Even for the same person, his/her skin-

color appearance will be different in a different environ-
Skin Color Modeling ment. In other words, many factors contribute to human
Color is the perceptual result of light in the visible region of skin-color appearance. In order to characterize skin-color,
the spectrum incident upon the retina. Physical power (0fve hope to find a color space in which skin-colors are less
radiance) is expressed in a spectral power distribution. Muclariant.
research has been directed to understanding and making use
of color information. The human retina has three dif‘ferentFor human color perception, a 3D color space such as an
types of color photoreceptor cone cells, which respond tQRGB space, is essential for describing a true color. How-
incident radiation with somewhat different spectral responsesyer, a 3D space is not necessarily essential for all other
curves. Based on the human color perceptual system, thrggoblems. In the problem of tracking human faces, bright-
numerical components are necessary and sufficient teess is not important. Therefore we can remove it from the
describe a color, provided that appropriate spectral weightoriginal information by normalization. Our experiments
ing functions are used. reveal that human color appearances differ more in bright-
In order to use skin color as a feature, we first have to chaf2€SS than in color itself. If we can remove the brightness
acterize skin colors. Color can be characterized by a nonffom the color representation, the difference among human
parametric model such as a color map, or a parametric modgkin-colors can be greatly reduced. In fact, a triplg,[
such as a distribution model. We are interested in developingl'| the RGB space represents not only color but also bright-
a distribution model for representing human skin color distri-€SS: If the corresponding elements in two poimts, ¢y,
butions. The general procedure for developing a distributiorP1] and [, &, b,], are proportional, i.e.,
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ABSTRACT information about users for computer systems. Using visual
In this paper, we present visual tracking techniques for mul-information and combining it with other information, it is
timodal human computer interaction. First, we discuss tech-possible to identify the message source, message target, and
niques for tracking human faces in which human skin-color extract the message content. For example, a system can
is used as a major feature. An adaptive stochastic model ha®cate a user by merging visual face tracking algorithms and
been developed to characterize the skin-color distributions.acoustic sound source localization, identify who is talking
Based on the maximum likelihood method, the model to whom by extracting head orientation and eye gaze, and
parameters can be adapted for different people and differenextract message content by visual and acoustic speech rec-
lighting conditions. The feasibility of the model has been ognition.

demonstrated by the development of a real-time face i i i i

tracker. The system has achieved a rate of 30+ frames/sedD this paper, we present visual tracking techniques for mul-
ond using a low-end workstation with a framegrabber and atl_modal human computer interaction. First, we dlscuss_ tech-
camera. We also present a top-down approach for trackinglidues of tracking human faces. A human face provides a
facial features such as eyes, nostrils, and lip corners. Thes¥ariety of different communicative functions such as identi-
real-time visual tracking techniques have been successfullyfication, the perception of emotional expressions, and lip-
applied to many applications such as gaze tracking, and ”p_read!ng. Many applications in human computer interaction
reading. The face tracker has been combined with a microf€guire tracking a human face. Human skin-colors can be

phone array for extracting speech signal from a specific per-US€d as a major feature for tracking human faces. An adap-
son. The gaze tracker has been combined with a speecﬂve stochastic model has been developed to characterize the

recognizer in a multimodal interface for controlling a pan- skin-color distributions. Based on the maximum Ilkel|hood
method, the model parameters can be adapted for different
people and different lighting conditions. The feasibility of
Keywords the model has been demonstrated by the development of a
Visual tracking, multimodal human computer interaction, real-time face tracker. The system has achieved a rate of
skin-color modeling, face tracking, gaze tracking, lip-read- 30+ frames/second using a low-end workstation (e.g.,
ing, sound localization HP9000) with a framegrabber and a camera. Once a face is
INTRODUCTION located, it is much easier to locate the facial features such as

While multimodal interfaces offer greater flexibility and eyes, nostrils, and lips. This top-down approach works very

robustness than traditional mouse/keyboard interfaces, the%”el(lj.for r\r}\?mé app_lg:atlons suchl_as gaze ';raﬁkm_g, alnd I'pk'
have been largely pen/voice-based, user activated, and ope eading. We describe some applications of the visual track-
ated in settings where some constraining devices ar
required. For truly effective and unobtrusive multimodal
human-computer interaction, we envision systems that
allow for freedom of movement in a possibly noisy room

without the need for intrusive devices such as headsets an
close-talking microphones. In order to make this goal a real-
ity, we require not only efficient ways to integrate multiple TRACKING FACES IN REAL-TIME

modalities but also a better model of the human user based ,4ing and tracking human faces is a prerequisite for face

on a mixture of verbal and non-verbal, acoustic and visual eqgnition and/or facial expressions analysis, although it is

cues. A visual tracking system can provide much useful ggen assumed that a normalized face image is available. In
order to locate a human face, the system needs to capture an
image using a camera and a framegrabber, process the
image, search for important features in the image, and then
use these features to determine the location of the face. In
order to track a human face, the system not only needs to
locate a face, but also needs to find the same face in a
sequence of images.

oramic image viewer.

Ing techniques to multimodal human computer interaction.
®rhe face tracker has been combined with a microphone
array for extracting speech signal from a specific person.
The gaze tracker has been combined with a speech recog-
Hizer in a multimodal interface to control a panoramic
Image viewer.



