The K3 Approach:
Integrating Object Oriented Design and
Formal Verification

Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Martin Giese,
Elmar Habermalz, Reiner Hihnle, Wolfram Menzel, and Peter H. Schmitt

University of Karlsruhe, Institute for Logic, Complexity and Deduction Systems,
D-76128 Karlsruhe, Germany, http://il2wuw.ira.uka.de/ key

Abstract. This paper reports on the ongoing KeY project aimed at bridg-
ing the gap between (a) OO software engineering methods and tools and
(b) deductive verification. A distinctive feature of our approach is the use of
a commercial CASE tool enhanced with functionality for formal specification
and deductive verification.

1 Introduction

1.1 Amnalysis of the Current Situation

While formal methods are by now well established in hardware and system design
(the majority of producers of integrated circuits are routinely using BDD-based
model checking packages for design and validation), usage of formal methods in
software development is currently confined essentially to academic research projects.
Although there are industrial applications of formal software development [7], these
are still exceptional [8].

The limits of applicability of formal methods in software design are not defined
by the potential range and power of existing approaches. Several case studies clearly
demonstrate that computer-aided specification and verification of realistic software
is feasible [27,24]. The real problem lies in the excessive demand imposed by current
tools on the skills of prospective users:

1. Tools for formal software specification and verification are not integrated into
industrial software engineering processes.

2. User interfaces of verification tools are not ergonomic, they are complex, id-
iosyncratic, and often without graphical support.

3. Users of verification tools are expected to know syntax and semantics of one
or more complex formal languages. Typically, at least a tactical programming
language and a logical language are involved. Even worse, to make serious use
of many tools, intimate knowledge of employed logic calculi and proof search
strategies is necessary.

Successful specification and verification of larger projects, therefore, is done sep-
arately from software development by academic specialists with several years of
training in formal methods, in many cases by the tool developers themselves.

While this is viable for projects with high safety and low secrecy demands, it
is unlikely that formal software specification and verification will become a routine
task in industry under these circumstances.

The future challenge for formal software specification and verification is to make
the considerable potential of existing methods and tools feasible to use in an indus-
trial environment. This leads to the requirements:

1. Tools for formal software specification and verification must be integrated into
industrial software engineering procedures.

2. User interfaces of these tools must comply with state-of-the-art software engi-
neering tools.

3. The necessary amount of training in formal methods must be minimized. More-
over, techniques involving formal software specification and verification must
be teachable in a structured manner. They should be integrated in courses on
software engineering topics.

To be sure, the thought that full formal software verification might be possible
without any background in formal methods is utopian. An industrial verification
tool should, however, allow for gradual verification so that software engineers at
any (including low) experience level with formal methods may benefit. In addition,
an integrated tool with well-defined interfaces facilitates “outsourcing” those parts
of the modeling process that require special skills.

Another important motivation to integrate design, development, and verification
of software is provided by modern software development methodologies which are
iterative and incremental. Post mortem verification would enforce the antiquated
waterfall model. Even worse, in a linear model the extra effort needed for verifica-
tion cannot be parallelized and thus compensated by greater work force. Therefore,
delivery time increases considerably and would make formally verified software de-
cisively less competitive.

But not only must the extra time for formal software development be within
reasonable bounds, the cost of formal specification and verification in an industrial
context requires accountability:

4. It must be possible to give realistic estimations of the cost of each step in formal
software specification and verification depending on the type of software and the
degree of formalization.

This implies immediately that the mere existence of tools for formal software speci-
fication and verification is not sufficient, rather, a formal software specification and
verification process is needed.

1.2 The K&¥ Project

Since November 1998 the authors work on a project addressing the goals outlined
in the previous section; we call it the KR project (read “key”).

In the principal use case of the KeY system there are actors who want to imple-
ment a software system that complies with given requirements and formally verify
its correctness. The system will assist with and document the different work-flows of
this process: requirements, analysis, design, and implementation. In addition there
will be the work-flow called verification. It is responsible for adding formal detail to
the analysis model, for creating conditions that ensure the correctness of refinement
steps (called proof obligations), for finding proofs showing that these conditions are
satisfied by the model, and for generating counter examples if they are not. Special
features of KeY are:

— We concentrate on object-oriented analysis and design methods (OOAD), be-
cause of their key role in today’s software practice, and on JAVA as the target
language. In particular, we use the Unified Modeling Language (UML) [21] for
visual modeling of designs and specification and the Object Constraint Lan-
guage (OCL) for adding further restrictions. This choice is supported by the
fact, that the UML (which contains OCL since version 1.3) is not only an OMG
standard, but has been adopted by all major OOAD software vendors and is
featured in recent OOAD textbooks [19].

— We use a commercial CASE tool as starting point and enhance it by additional
functionality for formal specification and verification. The current tool of our
choice is Sterling’s COOL:JEX.

— Formal verification is based on an axiomatic semantics of the real programming
language JAVA CARD [28] (soon to be replaced by Java 2 Micro Edition, J2ME).

— As a case study to evaluate the usability of our approach we develop a scenario
using smart cards with JAVvA CARD as a programming language [14,15]. JAVA
smart cards make an extremely suitable target for a case study:

As an object-oriented language, JAvA CARD is well suited for OOAD;

the JAvA CARD language lacks some crucial complications of the full Java
language (no threads, fewer data types, no graphical user interfaces);
Java CARD applications are small (JAVA smart cards currently offer 16K
memory for code);

at the same time, JAvA CARD applications are embedded into larger pro-
gram systems or business processes which should be modeled (although not
necessarily formally verified) as well;

Java CARD applications are often security-critical, thus giving incentive to
apply formal methods;

the high number (usually millions) of deployed smart cards constitutes a
new motivation for formal verification, because, in contrast to software run
on standard computers, arbitrary updates are not feasible;!

— Through direct contacts with software companies we check the soundness of our
approach for real world applications.

The KeY system consists of three main components (see Fig. 1):

K& System
Extension
CASE Tool for

Precise
Modeling

Verification Manager

Deduction Component

automated interactive
| counterexamples

Fig. 1. Architecture of the KeY system.

— The modeling component: this component is based on the CASE tool and is
respounsible for all user interactions (except interactive deduction). It is used
to generate and refine models, and to store and process them. The extensions
for precise modeling contains, e.g., editor and parser for the OCL. Additional
functionality for the verification process is provided, e.g., for writing proof obli-
gations.

! While JAvA CARD applets on smart cards can be updated in principle, for security
reasons this does not extend to those applets that verify and load updates.

— The verification manager: the link between the modeling component and the
deduction component. It generates proof obligations expressed in formal logic
from the refinement relations in the model. It stores and processes partial and
completed proofs; and it is responsible for correctness management (to make
sure, e.g., that there are no cyclic dependencies in proofs).

— The deduction component. It is used to actually construct proofs—or counter
examples—for the proof obligations generated by the verification manager. It is
based on an interactive verification system combined with powerful automated
deduction techniques that increase the degree of automation; it also contains a
part for automatically generating counter examples for failed proof attempts.
The interactive and automated techniques and those for finding counter exam-
ples are fully integrated and operate on the same data structures.

Although consisting of different components, KeY is a fully integrated system with
a uniform user interface.

It is worth pointing out that we do not assume any dependencies between the
increments in the development process and the verification of proof obligations.
In Fig. 2 progress in modeling is depicted along the horizontal axis and progress
in verifying proof obligations on the vertical axis. The overall goal is to proceed
from the upper left corner (empty model, nothing proved) to the bottom right one
(complete model, all proof obligations verified). There are two extreme ways of
doing that:

— First complete the whole modeling and coding process, only then start to verify

(Fig. 2(a)).
— Start verifying proof obligations as soon as they are generated (Fig. 2(b)).

In practice one chooses an intermediate approach (Fig. 2(c)). How this approach
does exactly look is an important design decision of the verification process with
strong impact on the possibilities for reuse and is the topic of future research.

progress in modeling

D
N ~

Buiroid ur ssiboid
7

[CY

/-
2
-

£

Fig. 2. Two dimensions: modeling and verification.

2 Designing a System with K3’

2.1 Specification with the UML including the OCL

When designing a system with KeY, one first develops a UML model using our inte-
grated CASE tool as usual (see the following subsection for process methodology).

The diagrams of the Unified Modeling Language provide, in principle, an easy and
concise way to formulate various aspects of a specification, however, as Steve Cook
remarked [30, foreword]: “[...] there are many subtleties and nuances of meaning
diagrams cannot convey by themselves.”

This was a main source of motivation for the development of the Object Con-
straint Language (OCL), part of the UML since version 1.3 [21]. Constraints written
in this language are understood in the context of a UML model, they never stand
by themselves. The OCL allows to attach preconditions, postconditions, invariants,
and guards to specific elements of a UML model. It is easy to extract the signature
to be used in OCL expressions automatically from the class diagrams of a model.

The second step in designing a system with KeY is thus to make the UML
model more precise by adding OCL constraints (making the UML more precise is
also on the agenda of the precise UML group whose goals are laid down in [9], see
also www.cs.york.ac.uk/puml/). For that purpose, the KeY system provides menu
and dialog driven input possibility to assist the user. Certain standard tasks, for
example, generation of formal specifications of inductive data structures (including
the common ones such as lists, stacks, trees) in the UML and the OCL can be done
fully automated, while the user simply supplies names of constructors and selectors.
Even if formal specifications cannot fully be composed in such a schematic way,
considerable parts usually can.

Another possibility to bring (OCL) constraints into a UML model is by enriched
design patterns. In the KeY system we will provide common patterns that come
complete with predefined constraints or constraint schemata. The user needs not
write formal specifications from scratch, but only to adapt and complete them.

As an example, consider the composite pattern [11, p. 163ff], depicted in Fig. 3.
This is a ubiquitous pattern in many contexts such as user interfaces, recursive data
structures, and, in particular, in the model for the address book of an email client
that is part of one of our case studies.

Clientf --=---- > Component children

+Operation () 0..%
+Add (c: Component)
+Remove (c: Component)
+GetChild(i:int)

Leaf Composite
+Operation () +Operation ()
+Add (c: Component) <

+Remove (c: Component)
+GetChild (i:int)

Fig. 3. The composite pattern.

The concrete Add and Remove operations in Composite are intuitively clear
but leave some questions unanswered. Can we add the same element twice? Some
implementations of the composite pattern allow that [13]. If it is not intended, then
one has to impose a constraint, such as:

context Composite: :Add (c:Component)
post: self.children—select(p|p = c¢)—size = 1

This is a postcondition on the call of the operation Add in OCL syntax. After
completion of the operation call, the stated postcondition is guaranteed to be true.

Without going into details of the OCL, we give some hints on how to read this
expression. The arrow “—” indicates that the expression to its left represents a
collection of objects (a set, a multiset, or a sequence), and the operation to its right
is to be applied to this collection. The dot “.” is used to navigate within diagrams
and (here) yields those objects associated to the item on its left via the role name
on its right. If C' is the multiset of all children of the object self to which Add
is applied, then the select operator yields the set A ={p € C |p=c} and the
subsequent integer-valued operation size gives the number of elements in A. Thus,
the postcondition expresses that after adding c as a child to self, the object ¢
occurs exactly once among the children of self.

There are a lot of other useful (and more complex) constraints, e.g., the con-
straint that the child relationship between objects of class Component is acyclic.

2.2 The Modeling Process

In addition to a suitable language to express (formal) models—in KeY this is the
UML including the OCL—a methodology guiding the modeling process must be pro-
vided. Most methodologies described in the OOAD literature, for example, OOD [5]
or the Rational Unified Process [17], have two important features in common: They
are iterative and incremental.

These features have been adopted for the methodology used in KeY: A project
is divided into iterations. In each iteration the user develops a complete model; the
increments achieved within the iterations are that the models get more and more
precise. The model of iteration ¢ + 1 refines the model of iteration i (a detailed
description of the refinement relation is given below).

In all refinements—except the final one—models are expressed in the UML (in-
cluding the OCL), however, in later iterations the models become more detailed
and, in addition, contain more OCL constraints, which provide for a higher de-
gree of precision. The final refinement step is the implementation, in other words,
we consider the realization of a system in JAVA code to be a particular (and very
precise) model of that system.

2.3 The K3 Module Concept

As said before, the process of modeling a system consists of several iterations. In
addition, the KeY system supports modularization of the model. Those parts of a
model that correspond to a certain component of the modeled system are grouped
together and form a module. Modules are a different structuring concept than iter-
ations and serve a different purpose. A module contains all the model components
(diagrams, code etc.) that refer to a certain system component. A module is not
restricted to a single level of refinement.
There are three main reasons behind the module concept of the KeY system:

Structuring: Models of large systems can be structured, which makes them easier
to handle.

Information hiding: Parts of a module that are not relevant for other modules
are hidden. This makes it easier to change modules and correct them when
errors are found, and to re-use them for different purposes.

Verification of single modules: Modules can be verified separately, which al-
lows to structure large verification problems. If the size of modules is limited,
the complexity of verifying a system grows linearly in the number of its modules
and thus in the size of the system. This is indispensable for the scalability of
the KeY approach.

In the KeY approach, a hierarchical module concept with sub-modules supports
the structuring of large models. The modules in a system model form a tree with
respect to the sub-module relation.

Besides sub-modules and other model components, a module contains the re-
finement relations between components that describe the same part of the modeled
system in two consecutive levels of refinement. The verification problem associated
with a module is to show that these refinements are correct (see Section 3.1). The
refinement relations must be provided by the user; typically, they include a signature
mapping.

To facilitate information hiding, a module is divided into a public part, its con-
tract, and a private (hidden) part; the user can declare parts of each refinement level
as public or private. Only the public information of a module A is visible in an-
other module B provided that module B implicitly or explicitly imports module A.
Moreover, a component of module B belonging to some refinement level can only
see the visible information from module A that belongs to the same level. Thus,
the private part of a module can be changed as long as its contract is not affected.
For the description of a refinement relation (like a signature mapping) all elements
of a module belonging to the initial model or the refined model are visible, whether
declared public or not.

As the modeling process proceeds through iterations, the system model becomes
ever more precise. The final step is a special case, though: the involved models—
the implementation model and its realization in JAVA—do not necessarily differ
in precision, but use different paradigms (specification vs. implementation) and
different languages (UML/OCL vs. JAva).?

Fig. 4 shows a schematic example for the levels of refinement and the modules of
a system model (the visibility aspect of modules is not represented here). Stronger
refinement may require additional structure via (sub-)modules, hence the number
of modules may increase with the degree of refinement.

imprecise
model

model

ELERBUEINENTIEN]

1
I

|:| Part of module within one refinement Refinement relation

I:I Module - — —» Import relation

Fig. 4. Example for levels of refinement and modules of a system model.

2 In conventional verification systems that do not use an iterative modeling process [22, 25],
only these final two models exist (see also the following subsection). In such systems,
modules consist of a specification and an implementation that is a refinement of the
specification.

Although the import and refinement relations are similar in some respects, there
is a fundamental difference: by way of example, consider a system component being
(imprecisely) modeled as a class DataStorage in an early iteration. It may later be
refined to a class DataSet, which replaces DataStorage. On the other hand, the mod-
ule containing DataSet could émport a module DatalList and use lists to implement
sets, in which case lists are not a refinement of sets and do not replace them.

2.4 Relation of KR¥ Modules to other Approaches

The ideas of refinement and modularization in the KeY module concept can be
compared with (and are partly influenced by) the KIV approach [25] and the
B Method [1].

In KIV, each module (in the above sense) corresponds to exactly two refinement
levels, that is to say, a single refinement step. The first level is an algebraic data
type, the second an imperative program, whose procedures intentionally implement
the operations of the data type. The import relation allows the algebraic data
type operations (not the program procedures!) of the imported module to appear
textually in the program of the importing module. In contrast to this, the Java
code of a KeY module directly calls methods of the imported module’s JAVA code.
Thus, the object programs of our method are pure JAVA programs. Moreover, KeY
modules in general have more than two refinement levels.

The B Method offers (among other things) multi-level refinement of abstract
machines. There is an elaborate theory behind the precise semantics of a refinement
and the resulting proof obligations. This is possible, because both, a machine and
its refinement, are completely formal, even if the refinement happens to be less
abstract. That differs from the situation in KeY, where all but the last refinement
levels are UML-based, and a refined part is typically more formal than its origin.
KeY advocates the integrated usage of notational paradigms as opposed to, for
example, prepending OOM to abstract machine specification in the B Method [18].

2.5 Modeling the Internal State of Objects

The behavior of objects depends on their state that is stored in their attributes,
however, the methods of a JAVA class can in general not be described as functions
on their input as they may have side effects and change the state. To model an
object or class, it must be possible to refer to its state (including its initial state).
Difficulties may arise, if methods for observing the state are not defined or are
declared private and, therefore, cannot be used in the public contract of a class. To
model such classes, observer methods have to be added. These allow to observe the
state of a class without changing it.

Example 1. Consider a class Registry containing a method seen(o: Object) :
Boolean that maintains a list of all the objects it has “seen”. It returns false,
if it “sees” an object for the first time, and true, otherwise. In this example, we
would add the function state () : Set (Object) allowing to observe the state of
an object of class Registry by returning the set of all seen objects. The behavior of
seen can now be specified in the OCL as follows:

context Registry::seen(o: Object)
post: result = statee@pre()—includes (o) and
state() = state@pre()—including (o)

The OCL key word result specifies the expected return value of seen, while @pre
gives the result of state () before invocation of seen, which we denote by oldstate.
The OCL expression state@pre () -»includes (o) then stands for o € oldstate
and state@pre () »including (o) for oldstate U {o}.

3 Formal Verification with K&”

Once a program is formally specified to a sufficient degree one can start to formally
verify it. Neither a program nor its specification need to be complete in order to start
verifying it. In this case one suitably weakens the postconditions (leaving out prop-
erties of unimplemented/unspecified parts) or strengthens preconditions (adding
assumptions about unimplemented parts). Data encapsulation and structuredness
of OO designs should be of great help here.

The verification process will be automated as much as possible with the help of
deduction techniques based on previous work [2] done in our group on integrating
our automated [4] and interactive theorem provers [25].

In a real development process, resulting programs often are bug-ridden, there-
fore, disproving the correctness of programs is as important as proving it. The in-
teresting and common case is that neither correctness nor its negation are deducible
from given assumptions, often because these assumptions do not fully specify the
data structures modified by the program. As a simple example, we might not have
any knowledge about the behavior of, say, pop(s: Stack): Stack if s is empty.
We are developing deductive techniques to automatically exhibit bugs, in particular
caused by underspecification, within the verification process.

Due to space limitation, a full description of the deductive component will be
given elsewhere.

3.1 Proof Obligations

The basis for reasoning about properties of programs in KeY is dynamic logic
(DL) [16], an extension of Hoare logic [3]. In contrast to Hoare logic, the set of
formulas of dynamic logic is closed under the usual logical operations. Typical build-
ings blocks of DL formulas are schemata P — («)@, which are true if for every state
satisfying precondition P a run of the program « starting in such a state terminates,
and in the terminating state the postcondition) holds. DL has been successfully
used in the KIV system [25]. It was shown [23] that there are no principal obsta-
cles to adapt the DL/Hoare approach to typed object-oriented languages. DL is
stronger than first-order logic, and allows, for example, to characterize cyclicity of
data structures.

Typically, the statements to be proven arise from OCL constraints in UML
models. The OCL (a) has no formal semantics and (b) has no means to connect
constraints to target programs. It is, therefore, not directly usable for automated de-
duction and, because of (a), one has to translate OCL constraints into DL formulas.
Details of this interesting subtask of the KeY project will be addressed in a separate
publication. Here, we merely say a few words on the origin of proof obligations.

We employ design by contract [20] as a guiding principle with the same restriction
as [30]: we completely ignore run-time aspects of this concept. Constraints occur as
pre- and postconditions of operations, and as invariants of classes, to mention the
most frequent cases.

We use constraints in two different ways: first, they can be part of a model (the
default); these constraints do not generate proof obligations by themselves. Second,
constraints can be given the status of a proof obligation; these are not part of the
model, but must be shown to hold in it.

Proof obligations may arise indirectly from constraints of the first kind: by
checking consistency of invariants, pre- and postconditions of a superclass and its
subclasses, by checking consistency of the postcondition of an operation and the
invariant of its result type, etc.

Even more important are proof obligations arising from iterative refinement
steps. To prove that a diagram D’ is a sound refinement of a diagram D requires

to check that the assertions stated in D’ entail the assertions in D. A particular
refinement step is the passage from a fully refined specification to its realization in
concrete code.

3.2 The K&¥ Program Logic

The basic building blocks for correctness statements in DL have the form (a)@,
representing the weakest condition, whose validity in a state s guarantees that
execution of the program a terminates in a state satisfying Q. We decided to take
a bold step and allow any legal JAVA CARD program to occur in the place of « in
our DL formulas.

We assume that programs and, in particular, expressions in programs are parsed
already. Thus, the calculus needs not to know about operator priorities etc., and
we can use notions like “immediate sub-expression” in the definition of our rules. A
full description of KeY-DL, the dynamic logic used in KeY, will be given elsewhere.
Here, we try to convey the basic spirit of our approach. The usual assignment rule
of DL3

(PYAx=1t]) = Q
P—(x=1t)Q

where y is new (1)

has to be modified and extended, because the evaluation of the JAvA CARD expres-
sion t (and even of x) may have side effects. The logic has to “know” about the
control flow during evaluation of expressions.

Ezample 2. Let us consider the formula F' = (P — (a)@) with

P = i=3Av[l]]=4Aj=4
a = v[i++] = j++ x j;
Q = i=4Av[]]=4AV[3]=20Aj=5
We want to show that F' is a valid formula: the execution of a in a state, where
precondition P holds, terminates in a state where postcondition @) holds.
The program « contains the postfix increment operator ++. According to the
Java language specification [12, Sect. 15.13.2], i++ may be used to refer to the

variable i. As a side effect, the value of i is increased by one afterwards. This is
reflected by a KeY-DL rule that handles i++. Applied to formula F, it yields:

(PAx=1i) — (i = i+1;)(vIx] = j++ * j;)Q (2)
Application of the assignment rule (1) to (2) then gives:
(PYAx=yAi=y+1) > (vIx] = j++ * j;)Q
Treating j++ in the same way we get the next two steps in the evaluation:
(P! Ax=yAiZ=y+1Aaz=j) (= j+15)(vIx] = z%5;)Q
(PP Ax=yAi=y+1Az=uAj=u+1)—> (vIx] = 2%j;)Q

How to treat assignments to array variables in program logics is well known [3];
in the present case, note that v[1] occurs in P and thus in the premiss of the
implication, and the two cases that v[1] is/is not changed by the assignment have
to be considered:
(x=1APIE A AT =ut 1AV =2%§) = Q) A
(CE=DAPI A ANj=u+1Av[E]=2z%]) = Q)

3)

3 The formula FY arises from the formula F by replacing all free occurrences of = by y.

10

The result (3) does not contain any JAVA code. Simplification of (3) using the
definition of P now yields:

(x=1Ay=3Ax=yA--)=Q) A
(y=3AV[1] =4 Au=4A-Ai=dAz=4Aj=5Av[3]=20) = Q)

It is easy to check that this indeed is a valid formula and our present theorem
proving tools [25,4] have no difficulties to show this automatically.

It is important to note that the postfix incremental operator ++ is not just a fancy
construct we must deal with to complete the picture. Such an operator, whether
important by itself or not, serves as a concise example for a general phenomenon in
a language like JAVA: expressions can have both, a value and an effect. In particular,
Java allows to call (non-void) methods, possibly changing the object’s state, inside
a value-returning expression. Therefore, the calculus must be able to ezrecute an
expression stepwise, as illustrated by the above example.

4 Related Work

There are many projects dealing with formal methods in software engineering in-
cluding several ones aimed at JAVA as a target language. There is also work on
security of JAVA CARD and ACTIVEX applications as well as on secure smart card
applications in general. We are, however, not aware of any project quite like ours.
We mention some of the more closely related projects:

— The CoaITo project [29] resulted in an integrated formal software development
methodology and support system based on extended Z as specification language
and Ada as target language. It is not integrated into a CASE tool, but stand-
alone.

— The FUZE project [10] realized CASE tool support for integrating the Fusion
OOAD process with the formal specification language Z. The aim was to formal-
ize OOAD methods and notations such as the UML, whereas we are interested
to derive formal specifications with the help of an OOAD process extension.

— The goal of the QUEST project [26] is to enrich the CASE tool AuToFocus
for description of distributed systems with means for formal specification and
support by model checking. Applications are embedded systems, description
formalisms are state charts, activity diagrams, and temporal logic.

— Aim of the SYSLAB project is the development of a scientifically founded ap-
proach for software and systems development. At the core is a precise and formal
notion of hierarchical “documents” consisting of informal text, message sequence
charts, state transition systems, object models, specifications, and programs.
All documents have a “mathematical system model” that allows to precisely
describe dependencies or transformations [6].

— The PROSPER (www.dcs.gla.ac.uk/prosper/index.html) project’s goal was to
provide the means to deliver the benefits of mechanized formal specification and
verification to system designers in industry. The difference to the KeY project is
that the dominant goal is hardware verification; the software part only involves
specification.

5 Conclusion and the Future of K&’

In this paper we described the current state of the KeY project and its ultimate
goal: To facilitate and promote the use of formal verification in an industrial context
for real-world applications. It remains to be seen to which degree this goal can be
achieved.

11

Our vision is to make the logical formalisms transparent for the user with respect
to OO modeling. That is, whenever user interaction is required, the current state of
the verification task is presented in terms of the environment the user has created
so far and not in terms of the underlying deduction machinery. The situation is
comparable to a symbolic debugger that lets the user step through the source code
of a program while it actually executes compiled machine code.

Acknowledgements

Thanks are due to S. Klingenbeck and J. Posegga for valuable comments on earlier
versions of this paper. We also thank our former group members T. Fuchf; R. Preif},
and A. Schonegge for their input during the preparation of the KeY project. The
KeY project is supported by the Deutsche Forschungsgemeinschaft under grant no.
Ha 2617/2-1.

References

1. J.-R. Abrial. The B Book — Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. W. Ahrendt, B. Beckert, R. Hihnle, W. Menzel, W. Reif, G. Schellhorn, and P. H.
Schmitt. Integration of automated and interactive theorem proving. In W. Bibel
and P. Schmitt, editors, Automated Deduction: A Basis for Applications, volume II,
chapter 4, pages 97-116. Kluwer, 1998.

3. K. R. Apt. Ten years of Hoare logic: A survey—Part I. ACM Transactions on Pro-
gramming Languages and Systems, 3(4):431-483, Oct. 1981.

4. B. Beckert, R. Hahnle, P. Oel, and M. Sulzmann. The tableau-based theorem prover
3TAP, version 4.0. In 13th International Conference on Automated Deduction, New
Brunswick/NJ, USA, volume 1104 of LNCS, pages 303-307. Springer-Verlag, 1996.

5. G. Booch. Object-Oriented Analysis and Design with Applications. Benjamin Cum-
mings, Redwood City, 2nd edition, 1994.

6. R.Breu, R. Grosu, F. Huber, B. Rumpe, and W. Schwerin. Towards a precise semantics
for object-oriented modeling techniques. In J. Bosch and S. Mitchell, editors, Object-
Oriented Technology, ECOOP’97 Post Conference Workshop Reader, Jyvéiskyld, Fin-
land, volume 1357 of LNCS. Springer-Verlag, 1997.

7. E. Clarke and J. M. Wing. Formal methods: State of the art and future directions.
ACM Computing Surveys, 28(4):626-643, 1996.

8. D. L. Dill and J. Rushby. Acceptance of formal methods: Lessons from hardware de-
sign. IEEE Computer, 29(4):23-24, 1996. Part of: Hossein Saiedian (ed.). An Invitation
to Formal Methods, pages 16-30.

9. A. S. Evans, S. Cook, S. Mellor, J. Warmer, and A. Wills. Panel paper: Advanced
methods and tools for a precise UML. In B. Rumpe and R. B. France, editors, 2nd
International Conference on the Unified Modeling Language, volume 1732 of LNCS.
Springer-Verlag, 1999.

10. R. B. France, J.-M. Bruel, M. M. Larrondo-Petrie, and E. Grant. Rigorous object-
oriented modeling: Integrating formal and informal notations. In M. Johnson, editor,
Algebraic Methodology and Software Technology (AMAST), Berlin, Germany, volume
1349 of LNCS. Springer-Verlag, 1997.

11. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

12. J. Gosling, B. Joy, and G. Steele, editors. The Java Language Specification. Addison
Wesley, 1996.

13. M. Grand. Patterns in Java, volume 2. John Wiley & Sons, 1999.

14. S. B. Guthery. Java Card: Internet computing on a smart card. IEEE Internet Com-
puting, 1(1):57-59, 1997.

15. U. Hansmann, M. S. Nicklous, T. Schick, and F. Seliger. Smart Card Application
Development Using Java. Springer-Verlag, 1999, to appear.

12

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30

D. Harel. Dynamic logic. In Handbook of Philosophical Logic, volume II: Extensions
of Classical Logic, pages 497-604. Reidel, 1984.

I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development Process.
Object Technology Series. Addison-Wesley, 1999.

K. Lano. The B Language and Method: A guide to Practical Formal Development.
Springer-Verlag London Ltd., 1996.

J. Martin and J. J. Odell. Object-Oriented Methods: A Foundation, UML Edition.
Prentice-Hall, 1997.

B. Meyer. Object-Oriented Software Construction. Prentice-Hall, Englewood Cliffs,
second edition, 1997.

Object Modeling Group. Unified Modeling Language Specification, version 1.3, June
1999. URL: uml.shl.com:80/docs/UML1.3/99-06-08.pdf.

L. C. Paulson. Isabelle: a generic theorem prover, volume 828 of LNCS. Springer-
Verlag, 1994.

A. Poetzsch-Heffter and P. Miiller. A programming logic for sequential Java. In
S. D. Swierstra, editor, Programming Languages and Systems (ESOP), volume 1576
of LNCS, pages 162-176. Springer-Verlag, 1999.

S. Qadeer and N. Shankar. Verifying a self-stabilizing mutual exclusion algorithm. In
IFIP Working Conference on Programming Concepts and Methods (PROCOMET),
Shelter Island/NY, USA. Chapman & Hall, 1998.

W. Reif. The KIV-approach to software verification. In M. Broy and S. Jahnichen,
editors, KORSO: Methods, Languages, and Tools for the Construction of Correct Soft-
ware — Final Report, volume 1009 of LNCS. Springer-Verlag, 1995.

O. Slotosch. QUEST: Overview over the project. In D. Hutter, W. Stephan,
P. Traverso, and M. Ullmann, editors, Applied Formal Methods — FM-Trends 98
— International Workshop on Current Trends in Applied Formal Methods, Boppard,
Germany, volume 1641 of LNCS, pages 346-350. Springer-Verlag, 1999.

K. Stenzel. A Verified Access Control Model. Technical Report 26/93, Fakultat fiir
Informatik, Universitat Karlsruhe, 1993.

Sun Microsystems, Inc., Palo Alto/CA, USA. Java Card 2.1 Platform API Specifica-
tion, 1998. URL: java.sun.com/products/javacard/JavaCard21API.pdf.

O. Traynor, D. Hazel, P. Kearney, A. Martin, R. Nickson, and L. Wildman. The Cog-
ito development system. In M. Johnson, editor, Algebraic Methodology and Software
Technology, Berlin, Germany, volume 1349 of LNCS, pages 586-591. Springer-Verlag,
1997.

J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling with
UML. Object Technology Series. Addison-Wesley, 1999.

13

