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Abstract

Considering di!erent friction laws the stability of decelerative sliding motions of a driven mechanical system is
investigated. Both sudden and permanent disturbances are applied. The resulting stick}slip phenomena mainly depend
on the properties of the mechanical system, especially on the drive, and less on di!erent characteristics of the friction
laws. ( 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Stick}slip; Stability; Deceleration; Friction laws

1. Introduction

The existence of dry friction in mechanical sys-
tems involves basic di$culties arising from the fact
that the de"ning friction laws are not exactly
known [1]. Investigations are focused either on
microscopic approaches [2] to explain the physical
nature of friction or on macroscopic assumptions.
The latter are phenomenological in their character,
like Coulomb's law, or various modi"cations of this
traditional law. They are used to analyse the
motions of bodies in friction contact. In most cases,
the selection of a particular friction law is made
heuristically without any explanation. Hence,
the main objects of these investigations are not the
friction laws as such, but primarily certain proper-
ties of motions, such as stick}slip, self-excitation,
limit cycles or general stability problems. As far as
stick}slip is concerned, these investigations restrict

on a drive with constant velocity where the result-
ing motion is governed by the chosen friction law.
In the following a linearly decreasing velocity of the
drive will be considered and the in#uence of di!er-
ent laws in addition with internal damping will be
discussed. These kinds of problems occur very often
in the engineering practice. Automobile or train
brakes can become noisy for low velocities near to
standstill. Contact problems with dry friction like
metal forming are unstationary processes. Here,
Coulomb's law is mainly used, which does not
show stick}slip phenomena in the stationary case,
i.e. constant velocity of the drive.

All friction models need certain parameters to
match experimental observations and numerical
simulations. From this viewpoint the number of
parameters should be as small as possible. In the
following, we therefore restrict ourselves to four
well-known macroscopic laws [3] with a maximum
of three parameters to compare their in#uence on
the motion of a given mechanical system, especially
on stick}slip phenomena.

A necessary condition to observe stick}slip
motions [4] is a strict separation between static
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Fig. 1. Friction laws: (I) one-parametric, (II), (III) two-paramet-
ric, (IV) three-parametric.

friction (`stickinga) and dynamic friction (`slid-
inga). The classical paradigm is a block lying on
a horizontal plane with a constant, time-invariant,
normal force and pulled with constant velocity via
the action of a spring. In the following, a decel-
erated motion of an extended mechanical system
with internal damping will be considered. The
question arises how di!erent friction laws in#uence
the stick}slip response in this rather general case.

2. Friction laws

Four types of dynamic friction laws will be con-
sidered. They can be formulated by only one equa-
tion

R"!R
D

sgnx5
2
#Cx5

2
, Dx5

2
DO0. (1)

Later on, the velocity x5
2

will be the velocity of
a mass m. Please note that a positive force R acts in
the positive direction of a coordinate x

2
.

For a temporary state `slidinga the validity of
this active force is limited by the necessary condi-
tion of non-vanishing velocity x5

2
. The parameters

R
D

and C are constant due to the implicit assump-
tion of time-invariant normal forces acting at the
contact surfaces. In a temporary state `stickinga
with vanishing velocity x5

2
,0 the active force

turns over to a passive one to be calculated from
the solution of the corresponding motion equation.
This intermittent behaviour of the contact force
leads to a strict separation of portions of `stickinga
and `slidinga during the course of time. A state
`stickinga is terminated when the absolute value of
the passive contact force reaches a certain thre-
shold R

S
. This gives a maximum number of three

parameters R
S
, R

D
and C to comprehend the fric-

tion properties.
Eq. (1) allows splitting up into four friction laws.

The in#uence of each law on the motion of the
stick}slip paradigm is known from literature.

I. One-parametric law (Fig. 1(I)):

R
S
"R

D
,

C"0.

In the case of the traditional Coulomb law the
trivial solution (permanent sliding) of the stick}slip

paradigm is globally stable. No stick}slip phenom-
enon can occur.

II. Two-parametric law (Fig. 1(II)):

R
S
'R

D
,

C"0.

This law is a simple approximation of a clock-
wise loop of a curved characteristic experimentally
investigated in [5]. The stick}slip paradigm shows
a limit cycle which is only reached for su$ciently
large disturbances. The trivial solution is stable
with respect to disturbances lying inside the limit
cycle [6, p. 130].

III. Two-parametric law (Fig. 1(III)):

R
S
"R

D
,

C'0.

This law is the approximation by the tangent of
a curved characteristic at the origin x5

2
"0. Its

applicability is therefore restricted to low velocities.
There exists a limit cycle for the stick}slip para-
digm. The trivial solution is unstable even for arbit-
rary small disturbances [6, p. 131].

The case C(0 shows no stick}slip. It can be
interpreted as law (I), having additional viscous
damping during sliding.

IV. Three-parametric law (Fig. 1(IV)):

R
S
'R

D
,

C(0.

The friction characteristic "rst decreases by
a jump and then increases when raising the velocity
x5
2
. This property is similar to the well-known

Stribeck curve. The stick}slip paradigm shows
a limit cycle. The trivial solution is stable with
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Fig. 2. Mechanical system.

respect to disturbances lying inside the limit cycle.
The case C'0 will be discussed later.

3. Mechanical problem

Consider a mechanical system with two masses
(M,m) connected by a linear spring (k) and a vis-
cous damper (d) (Fig. 2).

The displacements of both masses are given by
the absolute coordinates x

1
and x

2
. The mass M is

driven via a second linear spring (K). The drive
reads

y(t)"G
<t#At2/2#; sin)t,

<'0, A(0, 0)t(!</A,

0,

t*!</A.

(2)

Starting with a positive initial velocity <'0 at
time t"0 there exists a constant negative deceler-
ation A(0 superimposed by a harmonic perma-
nent disturbance with amplitude ; and natural
frequency ). If the mean driving velocity y5 "
<#At becomes zero, the total drive is switched o!.
A frictional device is attached to the mass m, the
properties of which are de"ned in Eq. (1).

In a temporary state `slidinga (2DOF) the be-
haviour of the system is described by
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#d(x5
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and in a state `stickinga (1DOF) by

MxK
1
#dx5

1
#(K#k)x

1
!kxH

2
"Ky. (4)

Here, the constant displacement xH
2

of the mass
m is known from the previous state `slidinga. Sim-
ilarly, the initial conditions of a new state follow
from the known displacements and velocities at the
end of the previous state. The total motion gener-
ally consists of an a priori unknown sequence of
both intermittent states. The points of transition
from one state to the next are controlled by switch-
ing conditions. The friction law (1) generally de-
scribes sliding phases in two directions with x5

2
'0

and x5
2
(0. To allow a comparison with the well-

known results of the stick}slip paradigm, where

only unidirectional sliding phases with x5
2
'0 can

exist, because of the positive velocity of the drive,
the following considerations will also be restricted
to a class of motions with variable positive sliding
velocities x5

2
'0. This assumption allows to con-

sider only necessary conditions for a transition
from one state to the next. On the other hand, the
result of a calculation must be proved, if the contact
force is always smaller than the positive value of the
static threshold R

S
.

A change from `slidinga to `stickinga occurs if

x5
2
"0 (5)

and in the opposite direction if

Dk(xH
2
!x

1
)!dx5

1
D"R

S
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A numerical calculation needs non-dimensional
quantities. The ratio u2

0
"k/m is used to introduce

a non-dimensional time q"u
0
t, an exciting fre-

quency ratio a")/u
0
, a damping factor

D"d/(2mu
0
) and the slope of the frictional charac-

teristics in the cases (II) and (IV) DH"C/(2mu
0
).

The static spring compression X
0
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S
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the properties of the drive g">/X
0

by the new
parameters v"</(X

0
u

0
), a"A/(X

0
u2

0
) and u"

;/X
0

and the coordinates by m
1
"x

1
/X

0
and

m
2
"x

2
/X

0
. The system parameters are given by

the ratios k"M/m and p"K/k. The value of the
dynamic friction at the origin is named o"
R

D
/R

S
)1. In all frictional laws considered the

threshold value of the non-dimensional passive
contact force is normalised to 1.

The new formulation gives the drive

g"G
vq#aq2/2#u sin aq,

v'0, a(0, 0)q(!v/a,

0,

q*!v/a.

(7)
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Fig. 3. Velocity of the drive, (a) without disturbance, (b) harmonic disturbance is added.

Corresponding to the restriction to motions with
unidirectional sliding velocities x5

2
'0 the dimen-

sionless velocity m@
2

is always positive. This yields
sgn m@

2
"1. The equations of motion (3) and (4) get

the simpler form
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and

kmA
1
#2Dm@

1
#(1#p)m

1
!mH

2
"pg,

m@
2
,0, mH

2
!m

1
!2Dm@

1
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4. Choice of parameter values and integration
procedures

The mechanical system is described by the group
of parameters k, p, D, the drive by the group
v, a, u, a and the friction by the group 1, o, DH. This
large number allows a great variety of examples. At
"rst, we therefore restrict ourselves to a distinct set
of parameters and then we discuss the in#uence of
a change on the system's response.

The mechanical system can be interpreted as
a heavy, sti! superstructure connected with a fric-
tional device as substructure. This leads to the
heuristical choice k"5 and p"10. A small inter-
nal damping D"0.01 seems to be a realistic value.
A deceleration a"!0.001 allows a slow approach
to stop the drive. This choice gives raise to long

sliding paths despite comparatively low initial vel-
ocities v. The amplitude u"0.1 of the permanent
disturbances is considerably smaller than the max-
imum displacement g(!v/a) in the interesting time
interval 0(q(!v/a. The frequency ratio
a"0.85 is su$ciently far away from the lowest
natural frequency 0.92 of the free mechanical sys-
tem without friction. Therefore, resonance e!ects
can be excluded. As a result, only the velocity
distribution g@(q) is a!ected by the existence of per-
manent disturbances (Fig. 3).

The introduction of non-dimensional quantities
automatically gives o"1 for the laws (I) and (III).
In both other cases o"0.75 is chosen. The slope of
the friction characteristic DH will be correlated later
on with the internal damping D. The values
DH"#0.02 in the case (III) and DH"!0.02 in
the case (IV) have the same order of magnitude
as D.

Procedures for integrating motion equations
of non-smooth systems have been discussed in
Ref. [7]. They consist of two tasks. Firstly, the
integration of the smooth problems (8) and (9)
within two successive separation points. This is
done numerically by a method given in Ref. [8].
Secondly, the determination of the separation
points. This is performed by numerical means in
a way described in Ref. [7]. Both tasks can be
carried out with limited accuracy only. Numerical
experiments are necessary to obtain orbitally stable
results [9].

The aim is to "nd both the velocity distribution
m@
2
(q) and the contact force F(q)

F(q)"G
!o#2DHm@

2
(q), m@

2
'0,

mH
2
!m

1
(q)!2Dm@

1
(q), m@

2
,0.

(10)
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Fig. 4. Velocities versus time for the undisturbed system.

at the friction device in the vicinity of the stop of the
drive, which does not coincide with the stop of the
whole system.

5. Trivial solution and its stability in the small

The non-smooth problem (8) and (9) has a trivial
solution which describes permanent decelerative
sliding with mA

1
"mA

2
"a. Because of m@

2
O0 only

the smooth linear problem (8) is of interest. Its
particular solution

m
1P

"a
q2
2
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p Bq

!
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pG(1#k)a#o!2DHCv#2DHa
1#p

p DH,

m
2P
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2
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!

1#p
p G

(1#p#k)a

1#p
#o!2DH

]Cv#2aADH
1#p

p
!D

p
1#pBDH (11)

is valid for all friction laws considered. The velocity
of the friction device and the drive di!er by a small

constant

m@
2P

!g@"2(1#p)DHa/p, (12)

which becomes zero for laws (I) and (II).
Stick}slip e!ects must be avoided in the engin-

eering practice. Rapid and sudden changes from
stick to slip and vice versa induce a broadband
excitation spectrum into the technical system, lead-
ing to squeal, rattling or even damage. In the mech-
anical system considered, the trivial motion (11) is
smooth without any oscillating part. All following
considerations therefore start with this trivial solu-
tion in a state of permanent sliding to "nd out the
reasons of turning over into stick}slip.

Solution (11) yields the initial conditions

m
1
(0)"m

1P
(0),

m
2
(0)"m

2P
(0),

m@
1
(0)"m@

1P
(0),

m@
2
(0)"m@

2P
(0), (13)

for numerical integrations. In the following, the
interesting time range before the stop of the drive is
chosen to be 300n. Because of a"!0.001, this
gives an initial driving velocity in all plots of
v"0.3n.

The trivial solution is stable in the small for the
laws (I), (II) and (IV) (see Fig. 4). The velocity is
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Fig. 5. Contact forces versus time for the undisturbed system.

identical to the drive (see Fig. 3a). Law (III) shows
an exceptional behaviour. The trivial solution is
unstable because of unavoidable numerical distur-
bances. Displacement and velocity of the frictional
device grow exponentially. When the velocity be-
comes zero, stick}slip is initiated. This result will be
modi"ed later for di!erent values of the internal
damping D.

Except for law III the corresponding contact
forces clearly exhibit the state `slidinga up to the
stop of the drive. At this point, they change from
active to passive with a jump (Fig. 5).

6. In6uence of a 5nite disturbance on the trivial
solution

Up to here, all considerations are based on ideal-
istic assumptions. In reality, a drive will never have
a perfectly constant deceleration and, moreover, all
friction laws always have stochastic deviations
from the assumed deterministic characteristics.
Various unpredictable disturbances can act on the
system during motion. Except law (III), the trivial
solution is stable in the small, or in other words,
stable with respect to in"nite small disturbances.
This property changes with a change to "nite
disturbances. The simplest procedure to investigate
the stability of the undisturbed solution is the tradi-

tional approach of adding a sudden disturbance of
displacement and/or velocity and to consider the
resulting system behaviour [10]. For reasons of
clarity, m@

2
is set equal to zero when the drive

reaches a certain velocity g@
0

less than the initial
velocity. This large disturbance can be interpreted
as the result of a single removable obstacle on the
sliding surface. A "rst stick phase is initiated. The
consequences can be seen for an arbitrarily chosen
value g@

0
"0.15n in Fig. 6. For practical applica-

tions it is important to decide about two possibili-
ties. Either the system reacts on a large disturbance
with transient damped vibrations tending to the
smooth trivial motion and containing only the
natural frequencies or the disturbance initiates
a permanent stick}slip motion with properties al-
ready discussed before. Unstationary stick}slip is
induced for laws (II) and (III). Both the other cases
show permanent sliding with damped vibrations
following the disturbance. This can be clearly seen
from the contact forces corresponding to laws (I)
and (IV).

A smaller velocity g@
0
"0.08n also creates

stick}slip for law (IV) (Fig. 7).
On the other hand, if g@

0
is enlarged, stick}slip

also vanishes for law (II). Except Coulomb's law
(case I), stick}slip can be induced in all other cases
by "nite disturbances, if the velocity of the drive is
su$ciently low. The exceptional behaviour of
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Fig. 6. Sudden disturbance at g@
0
"0.15n, (a) velocity, (b) contact force.

Coulomb's law will be eliminated later, when con-
sidering the in#uence of a change in the driving
deceleration.

These results contradict a statement about decel-
erative motions given in Ref. [11]. The authors
only considered law (IV) with the modi"cation

DH'0. A plot for DH"0.02, g@
0
"0.15n, keeping

all other parameters unchanged, can be seen in
Fig. 8. The stick}slip region of the motion re-
sembles the one in Fig. 7 with DH"!0.02. More-
over, all laws show the same properties in
a phenomenological sense. The di!erences in the

P. Vielsack / International Journal of Non-Linear Mechanics 36 (2001) 237}247 243



Fig. 7. Stick}slip for law (IV) for a disturbance at g@
0
"0.08n; (a) velocity, (b) contact force.

Fig. 8. Stick}slip for a modi"ed law (IV) with DH"0.02 at g@
0
"0.15n; (a) velocity, (b) contact force.

shape of the velocity distribution and the contact
forces are marginal. It seems rather impossible to
identify a distinct law by experimental means if decel-
erative motion is present.

7. Permanent disturbances of the trivial solution

The latter statement is improved for a non-ideal
drive. The simplest permanent disturbances are
harmonic ones, as de"ned in Eq. (2). To exclude
transient e!ects at the beginning, the time of integ-
ration is increased to 2400n. All results in the inter-
val 0)q)2000n are omitted. As before, the plots
start with the same distance 300n from the stop of
the drive.

Fig. 9 shows the velocity m@
2

versus time for the
four laws considered. The number of stick phases
are approximately the same in all cases. Even the
global shape of the velocity distribution looks sim-
ilar. Coulomb's law is no longer an exceptional case.

The transition from permanent sliding (trivial
solution) to stick}slip can be seen clearly in Fig. 10.
All laws exhibit a similar contact force F rapidly

varying from active to passive and vice versa in the
stick}slip region.

8. In6uence of parameters

The drive is given by the group v, a, u, a. The
initial driving velocity v depends on a and the
arbitrarily chosen time of integration. Stick}slip is
not in#uenced by the start of the motion. Increas-
ing the deceleration diminishes the number of stick
phases and vice versa. On the other hand, a large
deceleration gives rise to stick}slip after a "nite
disturbance even for Coulomb's law. Fig. 11 shows
velocity and contact force versus time. The distur-
bance occurs at a driving velocity g@

0
"0.5n, but

the deceleration a"!0.01 is ten times larger than
before. (Note the di!erent scale for Fig. 11a.)

Increasing the amplitude u of the permanent
disturbances increases the number of stick phases.
The exciting frequency a enlarges the stick}slip
region when approaching to one of the resonance
frequencies of the mechanical system without
friction.
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Fig. 9. Velocity versus time for permanent disturbances.

Fig. 10. Contact force versus time for permanent disturbances.
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Fig. 11. Stick}slip for Coulomb's law for a disturbance at g
0
"0.5n and a deceleration a"!0.01; (a) velocity, (b) contact force.

Fig. 12. Simpli"ed system with Coulomb's law; (a) model, (b) contact force for permanent disturbances.

The properties of the mechanical system are de-
scribed by the group k, p and D. A discussion about
the in#uence of a change in masses and sti!nesses
cannot be given generally, because of the non-
linearity of the problem. But it seems su$cient to
consider the extreme assumption MP0 and
KPR. Then, the mechanical system is simpli"ed
to the stick}slip paradigm (see Fig. 12a).

All preceding statements keep their validity in
a qualitative sense. As an example only the contact
force for permanent disturbances and Coulomb's
law are plotted (Fig. 11b). A qualitative di!erence
lies in the fact of constant passive contact forces
after the stop of the drive, because the damped
vibration of mass M does no longer exist.

Internal damping D mainly in#uences the law
(III). As can be seen from the motion equations (8)
the damping matrix is asymmetric. It contains the
element 2(D!DH). All calculations concerning law
(III) had been carried out with D"0.01 and DH"
0.02 which leads to a negative number 2(D!DH)"

!0.01. In a state of permanent sliding only the
linear system (8) is of interest. The stability of its
solution depends on the sign of real parts of the
roots of the characteristic equation. So far, the
values of both parameters give positive real parts.
This corresponds to instability due to the so-called
negative damping. Keeping the property DH of the
friction law (III) "xed and increasing internal
damping D there will be a change from positive to
negative. This transition occurs for a constant
DH"0.02 at a value D"0.0277 which is still very
small. For D"0.03 the trivial solution for law (III)
becomes stable in the small (Fig. 13a). A sudden
"nite disturbance (Fig. 13b) and permanent distur-
bances (Fig. 13c) lead to results similar to those of
all other laws.

9. Conclusions

Considered is a mechanical system with one fric-
tional device. The system is driven with constant
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Fig. 13. Velocity versus time for the law (III) with D'DH; (a) undisturbed, (b) sudden disturbance, (c) permanent disturbance.

deceleration until the driving velocity reaches zero.
The interest lies in the stick}slip behaviour of the
frictional device in the vicinity of the state of rest of
the total system. The in#uence of four di!erent
frictional laws on the system's response is investi-
gated. This leads to the question for the stability of
the trivial motion, which corresponds to permanent
sliding without stick phases. The concept of the
disturbed motion is used with two modi"cations.
Firstly, a "nite disturbance is applied at the undis-
turbed motion. All laws can react with stick}slip
phenomena depending on the deceleration, the
driving velocity at the time when the disturbance
occurs and on the value of internal viscous damp-
ing. Secondly, permanent disturbances can be pres-
ent. Then the system always behaves the same,
independent of the chosen friction law. From the
point, when the velocity of the friction device be-
comes zero the "rst time, permanent stick}slip re-
mains until the stop of the drive.

This leads to the conclusion that the existence of
stick}slip at decelerative motion mainly depends
on the properties of the mechanical system, espe-
cially the drive, and less on the characteristic of
a distinct frictional force.
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