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Passive vibration absorber with dry friction

A. Hartung, H. Schmieg, P. Vielsack

Summary The properties of a passive vibration absorber with dry friction significantly differ
from those of the classical linear absorber. The exceptional phenomenon is the possibility of
suppressing all excited modes. This effect is influenced to a small extent by a special shape of
the friction characteristic, but mainly by an appropriately adjusted threshold of the static
friction. The theoretical predictions are confirmed by experimental investigations.
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1

Introduction

A passive vibration absorber is a mass-spring subsystem coupled to a superstructure to control
its oscillations under the action of periodic excitation. A simple form of this arrangement is
shown in Fig. 1 where M; is a mass emulating the superstructure and K; is its mounting spring.
The second mass, M,, the coupling spring K, and a viscous damper d constitute the absorber
system. The superstructure is driven by a harmonic base motion with amplitude A and angular
frequency Q. Let x; be the displacement of M, and x, the displacement of M,, respectively. So
far, the problem is well known from elementary textbooks on linear vibration theory.

Now, a friction device is added to the substructure which turns the problem into a strongly
nonlinear mechanical system. The law for the friction force R must be defined in a way that R is
an active force if the device slides, and a passive one if the device sticks. This gives strict
separation between stick and slip phases during motion.

Classical investigations on motions of mechanical systems with dry friction are mostly based
on deterministic laws which are defined by the product of a dynamic friction coefficient,
depending on the relative velocity at the contact area, and the normal pressure, generally
depending on time, [1]. In the following, the normal force is assumed to be constant during
motion. Then, the dynamic friction force can be reduced to a simple expression
R = R;sgnx; + ax,. Introducing the threshold value R; for the static friction force, three
possibilities will be investigated as plotted in Fig. 2.

The simplest possibility is Coulomb’s law (Fig. 2a). Here, R; is equal to Ry, and the dynamic
force R depends only on the direction of sliding and not on the value of the relative velocity x,.
In the case of a decreasing characteristic (Fig. 2b), the equality R, = Ry still holds, but the
friction force depends linearly on the relative velocity x, with a negative slope a < 0. In the
third case (Fig. 2¢), the value R; of dynamic friction remains constant for x # 0, but the static
friction coefficient R; is larger than Rj.

The first question is whether or not different laws lead to significantly different responses
and phenomena of the vibration absorber. Secondly, the total behaviour of the mechanical
system is of interest, compared with the well-known efficiency of the classical linear vibration
absorber. And finally, experimental investigations should confirm the theoretical results.
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2
Equation of motion and integration procedure
Comprehensive literature on the subject of nonsmooth dynamical systems has been made
available in the last decade, [2]. The motion of the nonsmooth dynamical system considered
can consist of three states at the friction device, i.e. M, slides to the right (x, > 0), M, slides to
the left (X, < 0), and M, sticks (X, = 0). In the last case, the 2-DOF system degenerates into a
1-DOF system, and the active friction force turns over to a passive contact force.

For the computation of the time response, a dimensionless representation of all quantities is
recommendable. A dash indicates differentiation with respect to a dimensionless time
T = t\/K;/M,. The coordinates &; = x;/A,i = 1,2 are referred to the amplitude A of the ex-
citation. The parameters of the system are given by the friction coefficients p, = R;/(AK;) and
p4 = Ry/(AK3), the mass ratio m = M, /M,, the stiffness ratio k = K; /K;, the viscous damping
coefficient D = d//K,M, and the slope of the characteristic D* = a/+/K,M,. Then, the
property of the drive is simply given by the excitation frequency ratio 1 = Q+/M,/K,.

In a state of sliding, the equations of motion read

mé + D& — D&, + (1 + k)&, — & = k cos(n),

. (1)
2~ D&+ (D+D)E — &+ & = —pysgndy

The validity of these equations must be controlled by the condition &, # 0. In the state of
sticking, only one equation

mé& + D& + (1 + k)& — & =k cos(nr) (2)

exists. Its validity is controlled by the fact that the passive contact force must be smaller than
the threshold value p, which reads |&; — & — DE| < p,. The constant displacement ¢&; is
known from the end of the preceding state of sliding.

The total motion consists of a sequence of intermittent states described by Egs. (1) or (2).
Each state is valid during a certain time interval which depends on the history of motion. The
transition points between two successive states are called switching times. They are determined
by switching conditions. If the velocity of the friction device in a state of sliding reaches the
value

6/2 =0, (3)
sliding in one direction is terminated. Sticking is terminated if the condition

& =& =Dei|=ps (4)
holds.

At the end of each state, there must be a decision about the following state for times larger
than the last switching time 7,. The transition is controlled by the switching decision

p(10) = & — &i(10) — D& (o) ()



which corresponds to the value of the passive contact force at time 7. If a state of sliding is
terminated, two possibilities have to be taken into account: |p(y)| < p, indicates a transition
from sliding to sticking, and |p(79)| > p, gives a sudden reversal of the direction of sliding with
sgn &(19 + 0) = —sgn &, (1o — 0). At the end of a state of sticking, only sliding is possible.
The direction of sliding equals the direction of the contact force at 7, which leads to

sgn &, (1o + 0) = sgn p(to — 0).

The values of variables &, &, &,, &, at the end of a certain state give the initial conditions
for the equation(s) of motion of the following state. The total solution is pieced together.
The process is strongly history-dependent. Procedures for integrating nonsmooth dynamical
systems, therefore, consist of two tasks. Firstly, the integration on the linear equations
of motion (1) or (2) within two successive switching times. In the case of sticking (Eq. 2),
an explicit analytical solution can be given very easily. In the state of sliding, the equations
of motion (1) contain unsymmetrical damping. No analytical solution is known. Therefore,
a numerical integration of both cases is chosen. This will be done with a Runge-Kutta
formula, as described in [3]. This procedure has already been used successfully in [4].
Secondly, the numerical determination of the switching times by considering the switching
conditions (3) and (4). Problems arising from this procedure have been discussed in [5]
and [6].

3

Theoretical results

A numerical calculation needs numbers for the parameters m, k and D of the mechanical
system. Classical passive vibration absorbers are designed in a way that m and k are as large as
possible, which means that the absorber itself should be a small vibratory subsystem. With view
on the experimental investigations, this demand cannot be fulfilled in the present case, because
the friction device needs a certain geometrical dimension to ensure safe and reproducible
experimental results. Therefore, in the following, the values m = 4 and k = 1 are chosen for
both numerical and experimental investigations. Viscous damping D = 0.005 is assumed to be
very small. This value agrees with the experimentally measured damping of the experimental
arrangement in the case of vanishing dry friction (2-DOF system).

The optimum design of a vibration absorber system is normally discussed by frequency
response curves in the case of the classical linear problem. Because the principle of superpo-
sition does no longer exist for the nonlinear system with dry friction under consideration, all
following results are valid for fixed parameters only. But one can hope that they can be
extended in general, at least in a qualitative sense.

The following graphs do not provide any statements on the periodicity or non-periodicity
and uniqueness of stationary solutions, [7]. Therefore, the value

A;  (max¢; — min¢;)
A 2 ’

i=1,2, (6)

is defined to be the amplitude of the response. In the following plots (Figs. 3-5) two limit cases
exist: at the top, the frequency response curves for the 2-DOF system without friction showing
resonance peaks at # = #; and n = 1,; at the bottom, the frequency response curves for the
1-DOF system with one resonance peak at n = 1, for the case when the friction force tends to
infinity. Both graphs, well known from the linear vibration absorber, will serve as a reference in
the discussion about the influence of friction within the range 0 < p, < oo.

Figure 3 shows a family of frequency response curves for Coulomb’s law. Starting with
the linear system without friction (Fig. 3a), first the antiresonance A;/A =0 at n =1.0
disappears even for very low values of p, (Fig. 3b). A further increase of p, leads to a
removal of the resonance peak at the second natural frequency 7, (Fig. 3c). Exceeding an
exciting frequency higher than the second natural frequency #,, the vibration absorber does
no longer move. Within a small increase from p, = 0.33 (Fig. 3d) to p, = 0.375 (Fig. 3e), the
resonance peak at the first natural frequency #, also vanishes suddenly. From now on,
increasing values of p, produce standstill of the vibration absorber for a wide range of
exciting frequencies. In addition, the resonance peak at the natural frequency 7, of the
1-DOF system appears. The most interesting phenomenon in the evolution of frequency
response curves under consideration is the existence of a certain p,-range, with small
amplitudes, independent of the value of the exciting frequency (Fig. 3e-f). Properly chosen
friction can suppress high amplitude motions, which leads to a global stabilization in the
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entire frequency range. Such a saturation phenomenon is known from active nonlinear
absorbers, [8].

Figure 4 shows the corresponding evolution of frequency response curves for the case of a
decreasing characteristic. The values p, of the static friction are the same as before. The second
frictional parameter D* = —0.04 is intentionally chosen to be relatively large, to emphasize
possible differences in comparison to Coulomb’s law. On the other hand, the friction force
cannot become too small or even negative in reality. The computation is, therefore, interrupted
when the friction force becomes less than half the statical value p,. This is the case in Fig. 4b
and c at the resonance peaks.

Comparing the shape of the family of frequency response curves with the preceding ones
shows no qualitative differences between Coulomb friction and a decreasing characteristic.
Even the amplitudes are of the same order of magnitude. Quantitatively, there exists a small but
negligible additional peak in the vicinity of #,. The differences caused by both friction laws are
insignificant. Even the elimination of the resonance peaks occur for the same values p, as
before.

The same statements are valid for the third law considered, Fig. 5. Here again, an unrealistic
value p; = p,/2 is chosen to emphasize the difference in comparison to Coulomb’s law. The
influence of p, results in the fact that the suppression of high amplitude motions is shifted to
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larger values of p,, Fig. 5f. If p,; tends to p,, the system behaviour tends to the case of Coulomb
friction.

Comparing the results for the three different friction laws shows that the system’s response is
influenced only to a small extent by the special shape of the friction characteristic for velocities
|x2| > 0, but significantly by the static friction coefficient p; at x, = 0, which is responsible for a
transition from sticking to sliding. A similar statement can be found in [9] for stick-slip
motions induced by decelerative sliding.

4

Experimental investigations

The aim of the experimental investigation is to confirm the frequency response relationship for
different values of p,, to prove the existence of stick phases and to identify the corresponding
friction laws. The latter task causes severe uncertainties because friction laws are influenced not
only by mechanical parameters, such as relative velocity and normal force at the contact area,
but also by a change of the material properties at the interface, temperature, surface lubrica-
tion, wear, etc., [1]. To exclude the above-mentioned effects as much as possible the investi-
gation is restricted to a single frictional material which is used in the engineering practice for
pads of car-disc brakes, [10].
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4.1

Description of the experiments

The experimental setup consists of the mechanical system with sensors to determine its state
and a data acquisition system with a visual programming language, optimized for measure-
ments and also used for the graphical representation of the data. Figure 6 shows the scheme of
the mechanical part and the location of the sensors in a qualitative scale.

The mechanical system consists of two masses and two springs. The masses are cylinders of
high quality regarding geometry and surface. The cylinder on the left carries two additional
masses; its total mass is M = 8.35kg. The right cylinder is a tube with M/4 corresponding to
the theoretical assumption. Both cylinders are mounted in air bearings. This leads to a very
small damping coefficient D = 0.003. The springs are rings made of high-quality steel with a
large diameter of 300 mm. They act in both directions and are linear for small deflections
compared to the diameter. The linear behaviour was confirmed by means of experiments. A
spring constant of K = 0.67 N/mm was measured. The harmonic motion of the shaker pin,
clamped at one side of the left spring, has a constant amplitude A = 2.5 mm for all experiments.
The other side of this spring is clamped at mass M. The right spring connects the mass M with
the mass M /4. An adjustable friction member acts on this mass.

Figure 7 shows the scheme of the friction element in detail. The two arms on both sides of
the cylinder M/4 are hinged and pressed against the cylinder by a guided pin, movable by a
nut. A flat spring is clamped at the left end of the pin, which causes normal forces when the nut
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is screwed down. Both friction plates are made of pad material of disc brakes and embedded in
the arms. The friction between the cylinder and both plates acts along two straight lines.

The normal force is correlated to the signal of strain gages on the flat spring after calibrating
its value by separate experiments. This signal allows the reproduction of definite normal forces
for repeated measurements. To measure the state of the mechanical system at time ¢, further
sensors are necessary. Firstly, opto-electronic position sensors are used for the displacements
x1(¢) and x,(¢) of both masses and an inductive transducer for the motion of the drive. The last
signal is needed to control the amplitude A and to measure the angular frequency Q of the
exciter. The acceleration %, (t) of the mass M/4 is given by an accelerometer. The velocity x,(t)
is measured by an inductive transducer. A moved permanent magnet in a coil induces a voltage
which is strongly proportional to the velocity. It is noteworthy that sticking with X, = 0 can be
clearly identified. All signals are digitalized and stored in a computer. The applied program HP
VEE allows the combination of different signals.

4.2

Discussion of the results

The theoretical investigations are based on the fact that the normal force only influences

the static friction value R;. The shape of the characteristic is independent of the normal force.
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The first aim is to identify the friction characteristic R = R(x;) for different normal forces. For
this purpose three signals are combined to give the contact force

~R(E) = 5(0) + K ()~ 1(D) @

depending on time ¢. In addition, X,(¢) is measured. Figure 8a shows an example of R(¢) and
Fig. 8b of x,(¢) during about 1.5 periods of excitation with frequency 1.92 Hz. The velocity
diagram shows phases of sliding and sticking of approximately the same duration.

The combination of R(t) and x,(t) can be interpreted as parametric representation of the
friction characteristic R(X,). Eliminating time ¢ leads to the result given in Fig. 9.

All characteristics are based on measurements with the same exciting frequency
f =1.72Hz (y = 0.6), but different normal forces. Additional experiments with a fixed value of
the normal force have shown that a change in the frequency does not change the property of a
certain characteristic. Figure 9a fits to Coulomb’s law. The nondimensional value of the static
threshold is p, = 0.55. A change to a larger value of the normal force gives p, = 1.0, Fig. 9b.
A slight difference between p; and p, is present. A relatively large normal force, producing
ps = 4.4, changes the characteristic significantly. The result resembles the one given in [11].
Obviously, the magnitude of the normal force does not only influence the static threshold p,, as
assumed in theory, but generally the whole characteristic.

The second aim of the experimental investigations is to determine the frequency response
curves for a constant amplitude of excitation but varying exciting frequency, keeping the
normal force at the friction member fixed. These measurements are performed with a very slow
sweep of the exciting frequency, in order to obtain the stationary response of the mechanical
system. Because of the natural frequencies f; = 1.121 Hz, f, = 1.978 Hz and f, = 3.166 Hz,

a range from 0.9 to 3.4 Hz was chosen with a sweep time of half an hour. The maximum
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Fig. 10a-c. Frequency response curves for different normal forces

max(x;) and minimum min(x;) of the motions were searched to construct the ordinates
[max(x;) — min(x;)]/2,i = 1,2 of the response curves.

Figure 10 shows the frequency response curves corresponding to the friction forces of Fig. 9.
Both axes are made nondimensional in the same way as those of Figs. 3-5. This allows a
quantitative comparison of the experimental results with those of the theory. The vertical
dotted lines point out the frequencies #,,#;, and #,, which agree with the theoretical ones.

Small friction, Fig. 10a, is identical to the plots in Figs. 3d, 4d and 5e. A properly adjusted
normal force, Fig. 10b, eliminates all resonance peaks corresponding to Figs. 3f, 4f and 5f.
Large friction, Fig. 10c, leads to the resonance of the 1-DOF system discussed in Figs. 3g, 4g
and 5g.

Despite the fact of different characteristics for different normal forces, the results gained
experimentally do not only show high consistency with the theoretically predicted ones in a
phenomenological sense but also in the quantitative behaviour.

5

Conclusions

The effectiveness of a passive vibration absorber with dry friction mainly depends on the
existence of stick phases at the friction device during motion. In addition, the displacement
during the sliding phases must be made sufficiently large to eliminate mechanical energy from
the system. These demands are basically controlled by the magnitude of the threshold value p,
of the static friction force, which can be adjusted by the user. Despite the fact of harmonic
excitation, the system becomes permanently detuned. Because of alternating degrees of free-
dom in each period of excitation, no definite resonance points can exist. The special shape of
the dynamic friction laws during sliding, the so-called characteristic, has less influence, least of
all on the saturation phenomenon.
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The possibility of detuning an oscillating mechanical system seems to be a general property

of nonsmooth dynamic systems. A totally different problem shows the same effect. The reso-
nance of a vibrating beam can be suppressed by adding a second beam with different natural
frequencies. During motion both beams contact each other. The total system becomes detuned
by a sequence of impacts, [12].
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