
Model-Based Software Reuse
- Proceedings -

ECOOP 2002 Workshop #12
http://research.intershop.com/workshop/ECOOP2002/

or
http://www.info.uni-karlsruhe.de/~pulvermu/workshops/ECOOP2002/

In Association with the
16th European Conference on Object-Oriented Programming

Malaga, Spain -- June 10, 2002
http://www.ecoop.org

Andreas Speck, Intershop Research, Germany
Elke Pulvermüller, Universität Karlsruhe, Germany
Matthias Clauß, Solutionline CSS GmbH, Germany

Ragnhild Van Der Straeten, Vrije Universiteit Brussel, Belgium
Ralf Reussner, DSTC, Monash University, Australia

(Eds.)

Universität Karlsruhe
Fakultät für Informatik / Institut für Programmstrukturen und Datenorganisation (IPD)

Adenauerring 20a
76128 Karlsruhe, Germany

Universität Karlsruhe
Fakultät für Informatik
Interner Bericht (Internal Report)
Technical Report No. 2002-4
September 2002

II

III

Preface

This proceedings contains the contributions to the Workshop on Model-based Software Reuse, held
in conjunction with the 16th European Conference on Object-Oriented Programming (ECOOP)
Malaga, Spain June 10, 2002.
The workshop was motivated by the observation that convenient models are essential to understand
the mechanisms of reuse.
Models may help to define the interoperability between components, to detect feature interaction and
to increase the traceability. They have the potential to define the essential aspects of the
compositionality of the assets (i.e., components, aspects, views, etc.).

11 contributions give an overview about current research directions in the field of model-based
software reuse. The topics discussed in the contributions to this workshop embrace reasoning,
verification, stability issues as well as support for reuse and modeling. Discussion groups during the
workshop have explored the areas „Software Architectures as Composed Components“,
„Automated Analysis and Verification“ and „Modelling and Formalising“.
Results from the discussions during the workshop may be found in the ECOOP 2002 workshop
reader LNCS 2548.

The web page of the workshop as well as the contributions of this proceedings may be found at
URL:
http://research.intershop.com/workshop/ECOOP2002/

or at URL (mirror):
http://www.info.uni-karlsruhe.de/~pulvermu/workshops/ECOOP2002/

A related workshop about feature interaction has been held at ECOOP 2001; the contributions are
published as technical report No. 2001-14 at Universität Karlsruhe, Fakultät für Informatik
URL:
http://www.info.uni-karlsruhe.de/~pulvermu/workshops/ecoop2001/

We would like to thank the program committee for their support as well as the authors and
participants for their high-quality submissions and engaged contributions during the workshop.

The Workshop Organisers
Andreas Speck, Elke Pulvermüller, Matthias Clauß, Ragnhild Van Der Straeten, Ralf Reussner

IV

Program Committee

Lynne Blair, Lancaster University, UK
Hans de Bruin, Vrije Universiteit Amsterdam, Netherlands

Jim Coplien, University of Manchester, UK
Gerhard Goos, Universität Karlsruhe, Germany

Jilles van Gurp, University of Groningen, Netherlands
Wilhelm Hasselbring, Carl v. Ossietzky Universität, Germany

Heinrich Hußmann, Dresden University of Technology, Germany
Bernd Kraemer, Fern-Universität Hagen, Germany

Kim Mens, Université catholique de Louvain (UCL), Belgium
Silva Robak, University of Zielona Gora, Poland
Heinz W. Schmidt, Monash University, Australia

Judith Stafford, Carnegie-Mellon-University, USA
Liping Zhao, University of Manchester, UK

Organisation

Andreas Speck
Intershop Research, Germany
Email: a.speck@intershop.com

Elke Pulvermüller
IPD, Universität Karlsruhe, Germany

Email: pulvermueller@acm.org
WWW: http://www.info.uni-karlsruhe.de/~pulvermu/

Matthias Clauß
Solutionline CSS GmbH, Germany

Email: matthias.clauss@gmx.de

Ragnhild Van Der Straeten
Vrije Universiteit Brussel

Email: rvdstrae@vub.ac.be

Ralf Reussner
DSTC, Monash University, Australia

Email: reussner@dstc.com

V

Table of Contents

Reasoning and Verification

ARIFS: Reusing Formal Verification Efforts in a Requirements
Specifications Stage .. 1

Rebeca P. Díaz Redondo (University of Vigo, Spain) ,
José J. Pazos Arias (University of Vigo, Spain) ,
Ana Fernández Vilas (University of Vigo, Spain) and
Belén Barragáns Martínez (University of Vigo, Spain)

Feature Description Logic: A Knowledge-Based Modeling Approach to
Component Semantics .. 9

Yu Jia (Chinese Academy of Science, China) and
Yuqing Gu (Chinese Academy of Science, China)

Version-based Approach for Modeling Software Systems ... 15
Andreas Speck (Intershop Research, Germany),
Silva Robak (University of Zielona Gora, Poland),
Elke Pulvermüller(Universität Karlsruhe, Germany) and
Matthias Clauß (Intershop Research, Germany)

Stability

Stable and Reusable Model-Based Architectures .. 23
Ahmed Mahdy (University of Nebraska-Lincoln, USA),
Mohamed E. Fayad (University of Nebraska-Lincoln, USA),
Haitham Hamza (University of Nebraska-Lincoln, USA) and
Peeyush Tugnawat (University of Nebraska-Lincoln, USA)

Stable Model-Based Software Reuse .. 29
Mohamed E. Fayad (University of Nebraska-Lincoln, USA),
Shasha Wu (University of Nebraska-Lincoln, USA) and
Majid Nabavi (University of Nebraska-Lincoln, USA)

Model-based Software Reuse Using Stable Analysis Patterns .. 41
Haitham Hamza (University of Nebraska-Lincoln, USA) and
Mohamed E. Fayad (University of Nebraska-Lincoln, USA)

VI

Supporting Reuse / Modelling

Modelling Component Libraries for Reuse and Evolution ... 49
Miro Casanova (Vrije Universiteit Brussel, Belgium) and
Ragnhild Van Der Straeten (Vrije Universiteit Brussel, Belgium)

Modelling With Components - Towards a Unified Component Meta-Model 57
Uwe Rastofer (method park Software AG, Erlangen, Germany and
 University of Erlangen-Nuremberg, Germany)

Describing and Reusing Software Design Assets for System Family Engineering 63
Alexander Fried (University Linz, Austria) and
Herbert Prähofer (University Linz, Austria)

A Preliminary Analysis in Mapping UML Use Cases to State Machines 71
Luca Pazzi (University of Modena and Reggio Emilia, Italy)

Coupling MDA and Parlay to increase reuse in telecommunication application
development ... 77

Babak A. Farshchian (Telenor Research and Development, Norway),
Sune Jakobsson (Telenor Research and Development, Norway) and
Erik Berg (Telenor Research and Development, Norway)

1

ARIFS: Reusing Formal Verification Efforts in a Requirements Specifications
Stage

Rebeca P. Díaz Redondo, José J. Pazos Arias, Ana Fernández Vilas and Belén Barragáns Martínez
Departamento de Enxeñería Telemática. University of Vigo. 36200 Vigo. Spain

{rebeca, jose, avilas, belen}@det.uvigo.es

Abstract

Even though verifying systems during any phase of the
development process is a remarkable advantage of using
formal techniques in software engineering practice, the
great computing resources needed to verify medium-large
and large systems entails an efficiency problem in incre-
mental and iterative life cycles, where each iteration implies
identifying new requirements, verifying them and, in many
cases, modifying the current release of the system to sat-
isfy the new functional specifications. Reusing formal veri-
fication efforts is our proposal to reduce formal verification
costs in this kind of life cycles, and in this paper we describe
how ARIFS tool1 (ApproximateRetrievalof Incompleteand
Formal Specifications) provides a suitable environment to
achieve it. This reusing environment offers an approximate
and efficient retrieval, without formal proofs, which enables
classifying, retrieving and adapting formal and incomplete
requirements specifications and the formal verification re-
sults linked to them.

Keywords: software reuse, component-based re-
quirements engineering, reuse of formal requirement
specifications, iterative and incremental software processes.

1. Introduction

Reusing at early stages of the development process —
like at the requirements specification stage— is accepted by
many within the community as a desirable aim, because of
the possibility of increasing the reuse benefits [6]. How-
ever, there is little evidence in the literature to suggest that
software reuse at requirements specification stage is widely
practiced.

Our proposal [4, 3] deals with this concern, offering
a methodology to reuse high abstract level components:

1Partially supported by PGIDT01PXI32203PR project (Xunta de Gali-
cia)

incomplete specifications —obtained from transient phase
of an iterative and incremental requirements specification
process—; and their verification results —obtained from a
model checking algorithm. This methodology has come
to fruition in ARIFS tool, which provides a friendly envi-
ronment to classify, retrieve and adapt reusable components
in the requirements specification phase of the SCTL-MUS
methodology (section 2). The main characteristics of the
retrieval process can be summarized as follows:

– Although it is based on formal descriptions of the com-
ponents, these components are not low-level ones (like
code). Therefore, the formal description of the func-
tionality of a component is simultaneously index and
objective of the retrieval, having a acontent-oriented
retrieval, which allows reusing high abstract level
components in a natural way.

– Instead of having an exact retrieval based on formal
proofs, we propose anapproximate components re-
trieval based on the concept ofunspecification, inher-
ent to incomplete systems —which are obtained from
a transient phase of the iterative and incremental de-
velopment process—, that is, not everything is true or
false, maybe non specified yet.

– Because of efficiency reasons, the retrieval is made in
two steps, alayered retrieval process: in the first
phase,rough search, a small set of suitable com-
ponents is retrieved; and in the second one,refined
search, these components are ordered depending on
the prediction of the efforts needed to adapt each one
to the functionality required by the query.

2. Formal basis

In this section we briefly describe the software devel-
opment process, SCTL-MUS methodology [7], where the
reusing environment is going to be included. As figure
1 shows, this methodology joins both a totally formaliza-
tion of the process, and an incremental and iterative point

2

of view. In the first phase (Initial goals), a complete and
consistent functional specification of the system is obtained
from user’s specifications. In every iteration, the user spec-
ifies a set of functional requirements which lead to a growth
in the system functionality. These requirements are verified
in the current model or prototype to check: if the model
already satisfies the requirements; if it is not able to pro-
vide these functional requirements nor in the current itera-
tion neither in future ones (inconsistency); or, if the system
does not satisfy the requirements, but it is able to do it (in-
completeness).

Functional requirements are formally specified by using
the many-valued logic SCTL [7] (Simple Causal Temporal
Logic), and a generic SCTL requirement follows this pat-
tern:

Premise)
 Consequence,

which establishes a causing condition (premise); a temporal
operator determining the applicability of the cause ()
);
and a condition which is the effect (consequence). Tempo-
ral operator)
 2 f);)

J
;)g —referred to assi-

multaneously, previously andnext— is used to reason about
transition successors and predecessors of a given state by
determining the order pattern between the state in which
premise is formulated, and the states in the scope of the
consequence. Apart from causation, SCTL is a six-valued
logic, even though it is only possible specifying three differ-
ent values: possible ortrue (1), non possible orfalse (0) and
unspecified (1

2
). This concept of unspecification is specially

useful to deal with both incomplete and inconsistent infor-
mation obtained by requirements capture, because although
events will betrue or false at the final stage, in intermediate
phases of the specification process it is possible that users
do not have enough information about them yet, beingun-
specified in these phases.

No

New
goals

validation
User Performance

Prototype
Problems

Requirements

Validated requirements

Yes

Initial goals

SCTL MUS

SCTL−MUS
Verification

Initial
goals

Architectural designObtain initial
architecture

Refinements and
Maintenance

Figure 1. SCTL-MUS methodology

SCTL requirements are synthesized to obtain a model
of the system by using MUS [7] (Model of Unspecified

States). This state-transition formalism allows prototyp-
ing and feedback with users, and supports the consistency
checking by using a model checking algorithm. MUS
graphs are based on typical labeled-transitions graph, but
including another facility: unspecification of its elements.

The degree of satisfaction of an SCTL requirement is
based on causal propositions: “an SCTL requirement is sat-
isfied iff its premise is satisfied and its consequence is sat-
isfied according to its temporal operator” . As SCTL-MUS
methodology adds unspecification concept, this degree of
satisfaction must not be false (nor true), just as the Boolean
logic. In fact, it must have a degree of satisfaction related
to its unspecification (totally or partially unspecified on the
MUS model), because it can become true or false require-
ment, depending on how it is specified in future. Conse-
quently, this methodology defines six different degrees of

satisfaction, � 2 � = f0; 1
4
;

1

2
;

b1
2
;

3

4
; 1g, which can be par-

tially ordered according to a knowledge level (�c) (figure 2)
as follows:

– f1; b1
2
; 0g are the highest knowledge levels. We know at

the current stage of the system the final degree of sat-
isfaction of the property. The meaning of this verifica-
tion results are the following ones: 1 or true means the
requirement is satisfied; 0 or false implies the require-

ment is not satisfied; and b1
2

or contradictory means the
requirement cannot become true or false.

– f 1
4
;

3

4
g are the middle knowledge levels. Although at

the current stage of the system, the property is partially
unspecified, we know its satisfaction tendency. That
is, in a subsequent stage of specification, the degree of
satisfaction will be 1

4
�c �

0 (respectively 3

4
�c �

0) for
the current value 1

4
(respectively 3

4
).

– f 1
2
g is the lowest knowledge level. The property is

totally unspecified at the current system’s stage and
we do not know any information about its future be-
haviour.

Knowledge

Truth

1

2

3

4

10

1

4

b1
2

Figure 2. Knowledge and Truth partial order-
ings among degrees of satisfaction.

3

In short, the degree of satisfaction of an SCTL require-
ment varies according to its closeness to the true (or false)
degree of satisfaction —partial order according to truth
level whose Hasse diagram is in figure 2. According to this
truth ordering, � is a quasi-boolean lattice with the least
upper bound _ operator, the greatest lower bound ^ oper-
ator, and the unary operation : defined by horizontal sym-
metry. The 4-tuple (�;_;^;:) has the structure of the De
Morgan algebra called algebra of MPU [7] (Middle Point
Uncertainty). As it is shown in figure 2 —according to the
truth level Hasse diagram— 0 is the smallest truth degree,

whereas 1 is the greatest; so b1
2

and 1

2
are middle points in

this partial ordering. Besides that, b1
2

is far form the two ends
(0 and 1), but it cannot get to them, whereas 1

2
is near them,

and it can get to either, and this is the reason why it is called
algebra of Middle Point Uncertainty.

3. Functional relationships among reusable
components and SCTL properties

We have defined four partial ordering relations among
components to define component hierarchies or lattices to
classify and retrieve them properly. As this paper focus on
reusing verification efforts, we only describe here one of
them because the verification reuse process is based on it.

Function TC1 associates with every MUS graph g 2 G
a set TC1(g), which is based on complete trace semantics
[1]. Main difference with traditional ones are that TC1

takes into account both true and false events, in order to
differentiate false events from unspecified ones; and it in-
cludes infinite traces in TC

1(g). An example of TC1(g)

obtaining is shown in figure below.

a

c

e

b

:d

g

TC
1(g) = (b:d; ac; a(e)+; a(e) + c)

As it is shown in this example, TC1(g) provides all pos-
sible evolutions of the system, that is, it can evolve from
initial state to a final one, where event d is non possible (de-
noted by :d), through event b, from initial state to a final
one through events a and c; from initial state to a final one
through events a, a number non determined of events e and,
finally, event c; and from initial state through events a and
a number infinite of events e. Hence TC

1(g) provides a
good approximation of graph’s functionality.

TC
1(g) constitutes the observable behaviour of g ac-

cording to TC
1-criteria and it allows defining the equiv-

alence relation =1

TC
2 G � G given by g=1

TC
g
0 ,

TC
1(g) = TC

1(g0), and the preorder v1

TC
2 G � G

by gv1
TC

g
0 , TC

1(g) v TC
1(g0). v1

TC
provides a

partial order between equivalence classes, that is, graph sets
indistinguishable using TC

1-observations, so (G ;v1
TC

) is
a partially ordered set, or poset. A subset G1 2 G is called
a chain if every two graphs in G1 are TC1-related.

Every reusable component (C) gathers both its func-
tional specification, which is expressed by the set of SCTL
requirements and modeled by the temporal evolution MUS
graph, and an interface or profile information, which is au-
tomatically obtained from its functional characteristics to
classify and retrieve it from the repository. Besides this, ev-
ery reusable component stores verification information, that
is, the set of properties which had been verified on the MUS
graph and their verification results (section 4).

C1

C2

C4

C5C3

Figure 3. Chain of reusable components

Each reusable component (C) is classified in the repos-
itory after finding its correct place in the lattice defined
by TC

1 relation. That is, it is necessary looking for
those components TC1-related to C

2 such as C is TC1-
included on them, and those components TC1-related to
C such as they are TC1-included on C. In order to elim-
inate superfluous reusable components connections, anti-
symmetric property is applied (figure 33).

TC
1 can be also applied to SCTL properties in order

to obtain the sequence of events which is specified by func-
tional requirements. For instance, the requirement

R1 � (((d ^ b))c) ^ (true) a)

expresses that after being possible events d and b, it must
be possible event c, and in the same state where events
d and b are possible, event a must be also possible, so,
TC

1(R1) = (a; bc; dc). These results allow classifying
SCTL properties in functional equivalent classes which ex-
press the same behaviour, and, consequently, share the same
verification information. For instance, the requirement

R2 � ((a) (b)c)) ^ (d)c)

shares the same TC
1 information than R1: TC1(R2) =

(a; bc; dc).

2Two components C and C 0 are TC1-related (C v1
TC

C 0 or
C 0v1

TC
C) iff their MUS graphs g and g 0 are TC1-related (gv1

TC
g 0

or g 0v1
TC

g).
3In this figure, Civ

1

TC
Cj is represented by Ci ! Cj

4

4. Reusable verification information

In order to store interesting verification information
linked to each reusable component, we define four prop-
erties which summarize the degrees of satisfaction of an
SCTL property R in the states of a MUS graph g:

– 9 �R expresses that “some trace of the system satisfies
eventually R” and its degree of satisfaction is denoted
� (9 �R; g).

– 9�R expresses that “some trace of the system satisfies
invariantly R” and its degree of satisfaction is denoted
� (9 �R; g).

– 8 �R expresses that “every trace of the system satisfies
eventually R” and its degree of satisfaction is denoted
� (8 �R; g).

– 8�R expresses that “every trace of the system satisfies
invariantly R” and its degree of satisfaction is denoted
� (8 �R; g).

To sum up, for each property verified in the MUS graph,
we will have four derived properties whose degrees of sat-
isfaction make up the degree of satisfaction of an SCTL
property R in a MUS graph g, denoted � (R; g) = (�

(9 �R; g);� (8 �R; g);� (9 �R; g);� (8 �R; g)). This
verification information is stored in the reusable component
whose MUS graph is g, ready to be recovered whenever it
is necessary.

a b

a
c c

:b :c

:a
:b

E0

E1

E2

E3 E4
E5

g

(a) g

� (R;Ej) a b

� (R;E0) = 1 1 1

� (R;E1) = 0 1 0

� (R;E2) =
b1
2

0 1

2

� (R;E3) =
1

2

1

2

1

2

� (R;E4) =
1

4

1

2
0

� (R;E5) =
1

2

1

2

1

2

(b) � (R;Ej) 8Ej 2 g

Figure 4. Degrees of satisfaction of R in every
state of g

In order to obtain the degree of satisfaction of an SCTL
property R in a MUS graph g, it is necessary studying the

traces of states of the graph, that is, those sequences of
states through which the system can evolve. For instance, in
figure 4(a), the traces of states of g are the following ones:

(fE0; E1; E3g; fE0; E1; E4g; fE0; E2; E5g)

As each component of � (R; g) is the result of analyz-
ing the degrees of satisfaction of R in each trace, having
the degrees of satisfaction of R in every state of g is essen-
tial. For instance, in figure 4(b), these verification results
are shown for property R � (a) b), which expresses that
in the same state where event a is possible, event b must be
also possible.

Starting from the degrees of satisfaction of the property
in every state of the prototype and having the different traces
of g, we can obtain the following information:

– � (�R;E(�i)) = � (R;E1

i) _ : : :_ � (R;En
i)

where E(�i) is one of the traces of states of the sys-
tem, and fEj

i g
n
j=1 its set of states. This information

expresses if “E(�i) satisfies eventually R” . The logic
connective _ is the least upper bound operator in the
truth level partial ordering of the figure 2.

– � (�R;E(�i)) = � (R;E1

i) ^ : : :^ � (R;En
i)

whereE(�i) is one of the traces of states of the system,
and fEj

i g
n
j=1 its set of states. In this case, this informa-

tion expresses if “E(�i) satisfies invariantly R” . The
logic connective^ is the greatest lower bound operator
in the truth level partial ordering of the figure 2.

For instance, we can obtain these two degrees of satis-
faction for the trace of states E(�1) = fE0; E2; E5g of the
graph in figure 4(a) for the property R � (a) b). As

� (�R;E(�1)) = � (R;E0) _ � (R;E2) _ � (R;E5)

= 1 _
b1
2
_
1

2
= 1

we known that R is satisfied at least for one of the states of
the trace, and because of the following result

� (�R;E(�1)) = � (R;E0) ^ � (R;E2) ^ � (R;E5)

= 1 ^
b1
2
^
1

2
=

1

4

we known that R is partially specified on E(�1), but, re-
gardless of future iterations, R will not be satisfied in every
state on the trace.

Finally, knowing � (�R;E(�i)) and � (�R;E(�i)) in
every trace of states of the graph, we can conclude the de-
gree of satisfaction of R in g as follows:

� (9 �R; g) = � (�R;E(�1)) _ : : : _ � (�R;E(�m))

� (8 �R; g) = � (�R;E(�1)) ^ : : : ^ � (�R;E(�m))

5

� (9�R; g) = � (�R;E(�1)) _ : : : _ � (�R;E(�m))

� (8�R; g) = � (�R;E(�1)) ^ : : : ^ � (�R;E(�m))

For instance, in the graph of figure 4(a), where the de-
grees of satisfaction of R � (a) b) in every state are
reflected in the table 4(b), we can deduce that � (R; g) =

(1; 1; 1
4
; 0). This verification information entails the follow-

ing conclusions: because of � (8 �R; g) = 1, every trace
of g satisfies eventually R, that is, R is a liveness property
in g; since � (9 �R; g) = 1

4
, R is partially specified in g,

but regardless of future iterations, any trace of g does not
satisfy invariantly R, that is, R is not a safety property in g.

5. How to reuse verification efforts?

The defined classification scheme (section 3) implies
that, for instance in figure 3, C1 and C2 are functional parts
ofC3, being the last one a functional part ofC5. Main ques-
tion in this situation is: how to know the degree of satisfac-
tion of an SCTL property R in C3, if we know the degrees
of satisfaction of R in C1, C2 and C5?. In this section we
resolve this question after studying some mathematical as-
pects related to the ordering of degrees of satisfaction, and
by applying these results to the proposed practical environ-
ment.

5.1. Mathematical aspects

Let ve be a simulation relation between two states E1,
and E2, denoted by E1veE2, satisfying:

8E1
0
j E1

!
! E1

0 then 9 E2
0
j E2

!
! E2

0 and E1
0
veE2

0

and if E1

!
9 then E2

!
9

where E1

!
! E1

0 means the system can evolve from state
E1 toE2 through event!, that is it has been characterized as
possible or true in this state; and E1

!
9 implies the system

cannot evolve from the state E1 through event !, that is,
this event has been characterized as non possible or false in
this state.

Let g and g
0 two MUS graphs, then g

0 simulates g, de-
noted gve g

0, iff E0veE0
0, where E0 is the initial state of

g and E0
0 the initial state of g 0.

Property 1. LetE andE 0 be two states satisfyingEveE
0,

then � (R;E)�c � (R;E 0). That is, the degree of satis-
faction of a property R in E has a lower knowledge level
than its degree of satisfaction in E

0. 4

As consequence of property 1:

4This property’s demonstration is based on the structure of an SCTL
requirement.

– it is possible to obtain verification information about
the degree of satisfaction of one SCTL property R in a
MUS graph g, � (R; g), knowing the degree of satis-
faction of R in g

0, � (R; g 0), where gve g
0. The ver-

ification information which can be obtained is shown
in tables 2.(a) and 2.(b).

– and it is possible to obtain verification information
about the degree of satisfaction of R in g

0, � (R; g 0),
knowing the degree of satisfaction of R in g, � (R; g),
where gve g

0. The verification information which can
be obtained is shown in tables 1.(a), 1.(b), 1.(c) and
1.(d).

Apart from the verification results shown in these tables,
we can deduce more verification information taking into ac-
count that the initial state of a MUS graph is contained in
every single trace of states of the graph:

Property 2. LetR be an SCTL property which is satisfied in
the initial state of a MUS graph g, that is, � (R;E0jg) = 1,
then we know that � (9 �R; g) = 1, and we can deduce that
� (8 �R; g) = 1, and � (8 �R; g 0) = 1; 8g 0 j gve g

0.

This property gives more information than table 1.(a),
because this table shows that if a MUS graph satisfies �
(9 �R; g) = 1, we can only deduce that � (9 �R; g 0) =

1 in every MUS graph g
0 j gve g

0. Taking into account
property 2, if R is true in the initial state of g, we can also
conclude that � (8 �R; g 0) = 1; 8g 0 j gve g

0.

5.2. Practical aspects

The main problem of the solution proposed in the pre-
vious section is comparing MUS graphs using the ve rela-
tionship in an efficient way. The following property offers
a solution to this problem:

Property 3. ve defines a partial order between MUS
graphs, but, for deterministic graphs, it can be demonstrate
that ve is totally equivalent to v1

TC
.

because comparing components according to TC
1 rela-

tionship is much more efficient and equal effective (prop-
erty 3) than comparing components according to v e.

So, box labeled as Verification SCTL-MUS in figure 1,
where a property Ri is formally verified on a MUS proto-
type g, may be replaced by the following steps, which are
shown in figure 5:

1. Obtain the TC
1(g) information to be able to locate

in the repository the reusable components which are
TC

1-related to g.

6

� (9 �R; g) = 0 � (8 �R; g 0) = 0

� (9 �R; g) = 1 � (9 �R; g 0) = 1

� (9 �R; g) = b1
2 � (8 �R; g 0) �c

1

4

� (9 �R; g) = 1

4

(a) Results obtained from � (9 �R; g)

� (8 �R; g) = 0 � (8 �R; g 0) = 0

� (8 �R; g) = 1 � (9 �R; g 0) = 1

� (8 �R; g) = b1
2 � (9 �R; g 0) �c

3

4

� (8 �R; g) = 3

4

(b) Results obtained from � (8 �R; g)

� (9 �R; g) = 0 � (8 �R; g 0) = 0

� (9 �R; g) = 1 � (9 �R; g 0) = 1

� (9 �R; g) = b1
2 � (8 �R; g 0) �c

1

4

� (9 �R; g) = 1

4

(c) Results obtained from � (9 �R; g)

� (8 �R; g) = 0 � (8 �R; g 0) = 0

� (8 �R; g) = 1 � (9 �R; g 0) = 1

� (8 �R; g) = b1
2 � (9 �R; g 0) �c

3

4

� (8 �R; g) = 3

4

(d) Results obtained from � (8 �R; g)

Table 1. Reuse of verification results obtained
from � (R; g)

� (8 �R; g 0)�c 1

� (9 �R; g)�c 1

� (8 �R; g)�c 1

� (9 �R; g)�c 1

� (8 �R; g)�c 1

� (8 �R; g 0) = b1
2

or
� (8 �R; g 0) = 1

4

� (9 �R; g) 2 �� f0g

� (8 �R; g) 2 �� f0g

� (9 �R; g) 2 �� f0g

� (8 �R; g) 2 �� f0g

(a) Results obtained from � (8 �R; g 0)

� (9 �R; g 0)�c 0

� (9 �R; g)�c 0

� (8 �R; g)�c 0

� (9 �R; g)�c 0

� (8 �R; g)�c 0

� (9 �R; g 0) = b1
2

or
� (9 �R; g 0) = 3

4

� (9 �R; g) 2 �� f1g

� (8 �R; g) 2 �� f1g

� (9 �R; g) 2 �� f1g

� (8 �R; g) 2 �� f1g

(b) Results obtained from � (9 �R; g 0)

Table 2. Reuse of verification results obtained
from � (R; g 0)

7

Repository

Functional related
components

No (results)

Functional
profile

Functional
profile

Functional
profiles

MUS modelSCTL property

Components

REUSE PROCESS

Retrieving process

Extracting verification
information

Yes (results)

functional profile
Extracting

functional profile
Extracting

Verification
information

Is it enough?

Verification
SCTL−MUS

Figure 5. Verification information reuse

2. Obtain the TC
1(Ri) information in order to locate

those functional requirements which are functionally
equivalents to each Ri.

3. Retrieve those components whose classification dis-
tance to g is as little as possible and where verification
information about functionally equivalent to R i prop-
erties are stored.

4. Extract verification information about � (R i; g) from
the recovered components.

5. If the verification information obtained is not enough
to know the required verification results, it is necessary
to run the model checking algorithm, but this execution
can be reduced depending on the available verification
information.

6. Example of application

In this section, an example of verification reuse is out-
lined. The situation is as follows: we want to know the
degree of satisfaction of the property R � (c) a) in the
prototype g (figure 6).

Following the steps detailed in figure 5, we firstly obtain
TC

1(g) in order to find in the repository those reusable
components which are functionally related to g, and we ob-
tain TC

1(R) in order to locate those requirements which
are functionally equivalents toR. Applying these functional
profiles (TC1(g) and TC

1(R)), we are able to recover
from the repository the more suitable reusable components

a
b

a
c

:b

:b

c
:a

:c

a
b

c

c

:a

R � (c) a)

g

Figure 6. MUS graph g and requirement R

—for this example, figures 7(a) and 7(b) show the retrieved
components from a given repository. Both of them are func-
tional parts of g because of g1v1TC g and g2v

1

TC
g, and

they also have verification information about a functional
requirement equivalent to R (figure 8).

a b

a
c c

:b :c

:a
:b

(a) g1

a

:b
c

b

:a

a

c

(b) g2

Figure 7. MUS graphs related to g

g2

g

g1

� (R; g1) = (1; 3
4
;

1

2
; 0)

� (R; g2) = (1; 1; 1
2
; 0)

Figure 8. TC1-ordering among g1, g2 and g.

In order to obtain the degree of satisfaction ofR in g, that
is � (R; g), we study the verification information retrieved
from g1 and g2. Starting from � (R; g1) = (1; 3

4
;

1

2
; 0), the

following verification information can be deduced:

– As � (9 �R; g1) = 1 and because of the information
stored in table 1.(a), � (9 �R; g) = 1 is obtained.

– Neither � (8 �R; g1) = 3

4
(table 1.(b)) nor �

(9 �R; g1) =
1

2
(table 1.(c)) offer useful information

about � (R; g).

– And, finally, � (8�R; g1) = 0 implies � (8�R; g) =

0 (table 1.(d)).

As we do not still have enough information about �
(R; g), � (R; g2) = (1; 1; 1

2
; 0) is studied:

– As � (R;E0jg2) = 1, then � (8 �R; g) = 1 (property
2).

8

– And � (9�R; g2) =
1

2
don not allow us to deduce any

information about � (9 �R; g) (table 1.(c)).

To sum up, we have obtained that the degree of satisfac-
tion of R in g is � (R; g) = (1; 1; �; 0), where � can be
any degree of satisfaction of �. So, R is a liveness prop-
erty in g, that is, any trace of the model satisfies eventually
R (� (8 �R; g) = 1); and R is not a safety property in g,
that is, there are at least one state which does not satisfy R

(� (8 �R; g) = 0). These conclusions have been obtained
without running the model checking algorithm by using the
verification information about R in two functional parts of
g.

7. Summary and future work

The work introduced in this paper focuses on reusing
verification information linked to incomplete systems in a
totally formalized, incremental and iterative software de-
velopment process with the aim of minimizing its formal
verification costs. That is, we propose reusing verification
information obtained from the requirements specification
stage, as difference to other approaches like [5] where al-
though reusing verification results is also proposed, they are
less formalized proofs (simulation proofs) over code com-
ponents (algorithms).

After studying different relationships among incomplete
specifications, we have identified a criteria to compare func-
tional specifications which is based on trace semantics and
takes advance of unspecification inherent to incomplete
models. Applying this criteria, we build a lattice of reusable
components which allows avoiding formal verification tasks
in the retrieval process. This entails a fast retrieval which
is accurate enough to reuse verification information and it
makes a difference between other proposals [2, 8, 9] where
specification matching is based on theorem proving. We
have also identified what verification information can be
reused and, consequently, how to reduce formal verification
tasks.

In order to continue this proposal, we are working on
reusing verification results of functional similar properties
with the given one; and with the possibility of dividing the
given property into several properties. Both lines share the
same goal: increasing the possibility of finding interesting
verification information in the repository.

References

[1] Handbook of Process Algebra, chapter The Linerar Time -
Branching Time Spectrum I: The Semantics of Concrete, Se-
quential Processes. Elsevier Science.

[2] B. H. C. Cheng and J. J. Jeng. Reusing Analogous Com-
ponents. IEEE Trans. on Knowledge and Data Engineering,
9(2), Mar. 1997.

[3] R. P. Díaz-Redondo. Reutilización de Requisitos Funcionales
de Sistemas Distribuidos utilizando Técnicas de Descripción
Formal. PhD thesis, Departamento de Enxeñería Telemática
- Universidade de Vigo, 2002.

[4] R. P. Díaz-Redondo and J. J. Pazos-Arias. Reuse of Verifi-
cation Efforts and Incomplete Specifications in a Formalized,
Iterative and Incremental Software Process. In Proceedings
of International Conference on Software Engineering (ICSE)
Doctoral Symposium, 2001.

[5] I. Keidar, R. Khazan, N. Lynch, and A. Shvartsman. An
Inheritance-Based Technique for Building Simulation Proofs
Incrementally. In 22nd International Conference on Software
Engineering (ICSE), pages 478–487, 2000.

[6] W. Lam, J. A. McDermid, and A. J. Vickers. Ten Steps To-
wards Systematic Requirements Reuse. Requirements Engi-
neering, 2:102–113, 1997. Springer Verlag.

[7] J. J. Pazos-Arias and J. García-Duque. SCTL-MUS: A Formal
Methodology for Software Development of Distributed Sys-
tems. A Case Study. Formal Aspects of Computing, 13:50–91,
2001.

[8] J. Schumann and Fischer. NORA/HAMMR: Making
Deduction-Based Software Component Retrieval Practical. In
Proceedings of the 12th International Conference Automated
Software Engineering, 1997.

[9] A. M. Zaremski and J. M. Wing. Specification Matching of
Software Components. ACM Transactions on Software Engi-
neering and Methodology, 6(4):333–369, Oct. 1997.

9

Feature Description Logic: A Knowledge-Based
Modeling Approach to Component Semantics

Yu Jia† Yuqing Gu‡
Institute of Software, Chinese Academy of Science

Beijing(100080), China.
Email: †jia_yu@263.net ‡ guyq@sinosoftgroup.com

Abstract: In this paper a knowledge-based modeling
approach is suggested to represent and reason the
software component semantics. The core of this
approach is a logical tool called Feature Description
Logic (), where the Description Logics (DLs) are
applied to the Feature-Oriented Modeling technique,
as well as the a set of Feature Spaces expressed in
DLs is taken as the formal semantics to describe the
component properties. The goal of this paper is to find
a way to reason about the properties of component
-based system from the properties of individual
component.

Keywords: Knowledge-Based Modeling, Description

Logic, Component Semantics, Feature-Oriented.

1. Introduction

Software Reuse is the process of implementing or
updating software systems using existing software assets,
which offers a great deal of potential in terms of software
productivity and software quality with a long-term
decrease of costs for software development and
maintenance [5, 6]. In a broad sense, the reusable assets
encompass all the resources that are used and produced
during the development of software and have potential
value to reusers, such as features, subsystems,
components, aspects, etc.

Modeling assets is a critical issue in Software Reuse.
To date there exist many methods to model assets,
however most of them cannot provide a principle of
analyzing the compositional properties of asset assembly
[11]. This is an inevitable problem to be solved in
Software Reuse, because the reuse philosophy is
gradually transferring from inheritance as in
object-oriented technique to composition as in
Component-Based Development (CBD) [2].

In this paper, a knowledge-based modeling approach
with logical tool is suggested to represent and reason the

properties of one kind of most important reusable assets -
software components. Here we particularly regard the
component properties as the component semantics that
refers to the meaning and usage of the components in the
specific business domain. In addition, our approach
originates from and improves the Feature-Oriented
Modeling technique [4], which is taken as an engineering
method, making use of its practicability and success in
Domain Engineering.

This paper is organized as follows: Section 2 analyzes
the necessity of using knowledge-based approach in
assets modeling; the aim is to present a general reason
why we adopt the knowledge-based tool such as DLs in
our approach. Then in section 3 a feature-oriented
component semantic model is provided and is further
represented by the Feature Description Logic () in
section 4. Finally the basic reasoning tasks are presented
to indicate the applicable power of the logic tool in
composing reusable components.

2. The Necessity of Knowledge-Based
Reusable Assets Modeling

What is the essence of the Software Reuse? Obviously,
the answer is mostly dependent upon the profound
awareness of reusable assets. We should not be
bewildered by the various exterior forms of assets,
Whether they are the features, subsystems, components or
aspects, the reusable assets are in fact the carriers of
mankind intelligence. Undoubtedly we believe: Software
reuse is reuse of knowledge, not only reuse of software
assets themselves.

The Software Reuse Initiative of U. S. Department of
Defense (DoD) is one of the supporters of this opinion.
One of their literatures writes “The ability of an engineer
to reuse software is a direct consequence of the engineer's
knowledge of an asset's functions and other
characteristics, and the engineer's knowledge of how that
asset `fits' into a newly developed application and its
architecture” [6]. It is reasonable to think that the research
on the mental model of creating, understanding and
reusing assets will greatly benefit the upcoming era of

10

Software Reuse.

Analyzing from the relationship between the mankind
behavior in mind and the environment of real world, the
function and role of mental model for both asset creators
and reusers can be achieved. As depicted in figure 1, the
creators first apperceive the specific domain, which
covers a limited range of problems in the environment, to
obtain and represent business knowledge by some means
or other. Then they make decisions and design operations
as the result of reasoning to the knowledge. Finally the
decisions and operations are coded as a family of assets
(viz. the solution domain) to act on the problem domain,
as well as a kind of expectation is preset to evaluate
actual results of these assets to affect the environment and
feed back the results to the initial stage. On the other hand,
the reusers apperceive, obtain and produce the application
related knowledge from the existing assets and
application conditions. The solution of application system
is designed based on reasoning to the knowledge; and the
system building is under the guide of the solution and
from the existing assets.

Above analysis indicates that in the Software Reuse
process there are two mental models for reusable assets:
the mental model of creators when assets are originally
built; and the mental model of reusers for understanding
and using the existing assets. Ideally, if expressed in
knowledge-based approach, the same problem should
have the equivalent intension for the two type mental
models. Unfortunately, it is not always the case. The
insufficient and non-rigorous modeling methods
frequently lead to misunderstanding between the creators
and reusers. The lack of reasoning tools makes the reusers
impossible to check the reusability and consistency of the
assembly composed from the existing assets. In the rest of
paper a knowledge-base approach is suggested to
represent the mental model of software components; and
a logic tools is provided to check the properties of the
component assembly. Although the components are taken
as the research objects, what is discussed in this paper is
universal to all kinds of reusable assets based on
composition principle.

3. The Feature-Oriented Component
Semantics Model

A component is an identifiable software unit in an
explicit context with contractually specified semantic
interfaces that are reasonable in a domain as well as
syntactic interfaces that are supported by component
frameworks [2]. The component semantics is the
meaning and use of components in perspective of
domain-specific service in the real world [1,7].

Features are the constructing units of component
semantics, as well as the ontology of domain knowledge
in real world. A Feature Space is the architecture of
component semantics formed by features and feature
relations.

The feature-oriented component semantics model is
defined as follow [7]:

),,(ΩΩΩ= condom defCSemantics
Where,

The Domain Space Ωdom is a sound and complete
Feature Space that expresses the knowledge for a specific
domain. Domain Space is the product of Domain
Engineering, which represents the commonality and
variability in Feature Space to specify the
Domain-Specific Software Architecture (DSSA) of the
software families.

The Definition Space Ωdef is an instance set of Ωdom that
expresses the service provided by a component.
Definition Space specifies the semantics for an individual
component. The feature-oriented Method is a kind of
descriptive semantics, which declares the intension of the
functional and extra-functional properties of a component
without concerning the implementation and the state
transition.

The Context Space Ωcon is a collection of configurable
features and feature relations that represent the variable
parts of the component semantics. They are set by context.
The component semantics is possibly influenced by the
context when an individual component is integrated into
an application. The Context Space is what expresses the

Figure 1. Domain Knowledge: The Connection between the Creators and Reusers

11

variability of an individual component when adapting to
the context.

From the perspective of semantics-driven development,
the process of CBD is a sequential of operations to
compose, decompose and modify the Feature Spaces. The
Feature Space can be visually represented by the Feature
Diagram which consists of a set of nodes (denoting
features), a set of directed edges (denoting feature
relations), and a set of edge decorations. As the example
depicted in figure 2, the Feature Diagram is organized as
a tree structure; the three feature trees respectively
describing the three aspects of the component semantics
model. In figure 2 the tree notations are modified and
extended to the Feature Diagram in [8]. Complete details
about feature tree notations are given in [9].

(a) Feature Tree for Domain Space

(b) Feature Tree for Definition Space

(c) Feature Tree for Context Space

Figure 2. An Example of Feature Diagram for

Component Semantics
According to their functions and logic relationships,

the features can be categorized into mandatory feature
(denoted by a rectangle with a simple edge ending with a
filled circle. e.g. “Gender”), optional feature (denoted by
a rectangle with a simple edge ending with an empty
circle. e.g. “Child” in (a)), alternative feature (denoted by
a rectangle with edges connected by an arc. e.g. the group
of “Nursery”, “School” and “University”) and or-feature
(denoted by a rectangle with edges connected by a filled
arc. e.g. the group of “Mother” and “Father”). Each type
of feature can have a set of instances called feature items
(e.g. “yinyin:Child” means feature item “yinyin” is a
instance of feature “Child”); and the feature relationships

include two types: the aggregation relation (denoted by
the solid edges) and the instantiation relation (denoted by
the dotted edges).

Figure 2 shows each of the three aspects of the
component semantics model has a set of specified
notations. They are listed in Table 2,3 and 4.

4. Component Semantics Modeling In
Feature Description Logic

Description Logics (DLs) are knowledge representation
languages for expressing knowledge about concepts and
concept hierarchies [10]. In DLs the domain of interest is
modeled by means of individuals, concepts, roles and
knowledge base exactly corresponding to the feature
items, features, feature relationships and Feature Space
respectively. A knowledge representation system based
on DLs is able to perform specific kinds of reasoning.
The main reasoning tasks are classification and
satisfiability, subsumption and instance checking.

The purpose of using DLs in our modeling approach
includes three points:
y A formal language for component semantics

description. The formal semantics is the highest level of
semantic awareness for CBD society to pursue [1].
y A knowledge-based component reuse mechanism,

which is taken as a practical technique mirroring the
knowledge-based reuse theory stated in section 1.
y A reasoning tool supported by the basic reasoning

services in DLs. The reasoning ability is the premise for
CBD automation that is regarded as the only way for the
large-scale component reuse to turn into practice.

Table1 Syntax and semantics of concept and
role constructs

Table 1 shows a variant of DLs called , especially

designed for expressing Feature Space. In , starting
from a set of atomic features and atomic feature relations,
complex features and relations can be built by applying
certain constructs. Atomic features are denoted by A,
arbitrary features by C and D, atomic relations by P, and
arbitrary relations by R, all possibly with subscripts. The

12

following abbreviations are used to increase readability:
 for , C1 C2 for (C1 C2), and R. C for

R. C (means {o | o’ : (o, o’) R }. The
constructs of shown in Table 1 are almost standard
ones except for the alternative (the notation is) which
is interpreted as those features from which exactly one
feature is included in the description.

In DLs the formal semantics is specified through the
notion of interpretation. An interpretation = (,)
consists of a set (the domain of) and a function
(the interpretation function of) that maps every feature
to a subset of (i.e. C to concept C); and every
relation to a subset of (i.e. R to role R),
respecting the specific conditions imposed by the
structure of the feature or relation.

A knowledge base is formed by two constituent
parts: The intensional one, called TBox, and the
extensional one, called ABox. The TBox is a set of
assertions of the forms:

C1 C2 Feature Inclusion
C1 C2 Feature Equality

Where C1 and C2 are arbitrary concepts. C1 C2 is an
abbreviation for the pair of assertions C1 C2 and C2 C1.
An interpretation satisfies the assertion C1 C2 if
C 1 C 2. An interpretation is a model of a knowledge
base if it satisfies all assertions in it. In addition, the
cyclic statements are not allowed in .
 The ABox has one of the forms:

C(a) Feature Membership Assertion
R(a, b) Relation Membership Assertion

where C is a feature, R is a relation and a , b are
individuals. If = (,) is an interpretation, C(a) is
satisfied by if a C ,and R(a, b) is satisfied by if
(a , b) R .

Table 2 Description of Domain Space in

Table 3 Description of Definition Space in

Table 4 Description of Context Space in

As discussed above, the feature-oriented component
semantics model includes three aspects: the Domain
Space Ωdom, the Definition Space Ωdef and the Context
Space Ωcon. All these Spaces are the objects for to
describe. Considering the different properties of the three
aspects, Table 2,3 and 4 respectively list the names of
notation desired to construct each feature tree; and the
corresponding expressions or asserts are given,
demonstrating that is sufficient to describe the
component semantics model. In column 3 of each Table,
examples selected from Figure 2 are given to simply
explain the meaning of notations and expressions.

5. Model Checking and Reasoning in

The basic reasoning service in is satisfiability of a
feature C in a knowledge base Σ, written as Σ C . It
checks whether there exists a model of Σ such that
C ≠0. Other reasoning services such as Subsumption,
which is to check whether a feature is subsumed by
another, and Consistency, which is to check whether a
knowledge base is satisfiable, can be reduced to feature
satisfiablilty [10].

Suppose there exist two arbitrary features C, D, C1 and

13

C2 , an atom feature A, and an relation R. Following is the
procedure to reason about feature satisfiablilty [3, 10].
STEP 1 Transforming C into negation normal form D
which contains only complements of the atomic feature
by following ten rules:

(1) → ;
(2) → ;
(3) (C1 C2) → C1 C2;
(4) (C1 C2) → C1 C2;
(5) C→C;
(6) (R.C) → R. C;
(7) (R.C) → R. C;
(8) (n R) → (n+1 R);
(9) (n R) → R. if n = 1;
(10) (n R) →(n – 1 R) if n > 1.

STEP 2 Generating all complete constraint systems
deriving from {x:D}.

First we introduce what are the forms of constraint.
Assuming x, y, z are variable symbols, α is a function
maps every variable to an element of , then a
constraint is a syntactic object of one of the forms:

x : F, if α(x) F ;
x R y, if (α(x) ,α(y)) R ;

x y, if α(x) α(y)
A constraint system S is a finite, nonempty set of

constrains. Following six quasi-completion rules are
given to generate constraint systems:

(1) Intersection: S → {x: D1 , x:D2} S, if x:
D1 D2 is in S, and x: D1 and x: D2 are not both in
S.

(2) Union: S → {x: D } S, if x: D1 D2 is in
S, neither x: F1 nor x:F2 is in S, and D =D1 or D =
D2.

(3) Existential Quantification: S → {xRy, y: D }
S, if x: R.D is in S, there is no z such that z is
successor of x and z: F is in S, and y is a new
variable.

(4) Universal Quantification: S → { y: D } S, if
x: R.D is in S, y is successor of x in S, and y: D is
not in S.

(5) At-least Restriction: S → 1 {x R y} S, if no
other completion rule applies to S, x: (n R) is in
S, x does not have a R-successor in S, and y is a
new variable.

(6) At-most Restriction: S → S [y/z], if x: (n R) is
in S, x has more than n successor in S, and y, z are
two R-successors of x that are not separated. (S[y/z]
denotes the constraint system obtained from S by
replacing each occurrence of y by z.)

STEP 3 Checking whether all constrain systems contain a
clash. If any of them contains a clash, then C is satisfiable;
otherwise C is not satisfiable.

A clash is a constraint system having one of following
forms:

H. {x: } ;

(2) {x: A, x: A};
(3) {x: (m R), x: (n R)} where m>n .

The is a kind of . According to [10], the
satisfiability of such features can be decided in
nondeterministic polynomial time.
 The above checking procedure can be used to reason
about the semantic consistency of the component-based
system. Supporting system SYS is the assembly of
components CP1,CP2,…, CPn. Firstly, we use feature-
oriented modeling techniques to draw the feature trees for
each CPi(0≤i≤n), and express these trees in to
produce a group of feature spaces i

domΩ and i
defΩ . Note

that the context space is instantiated by configuration.
Secondly, we combine all Feature Spaces to form a

knowledge base for SYS: U
n

i

i
domdom

1=

Ω=Σ and

U
n

i

i
defdef

1=

Ω=Σ . Finally, we check the satisfiability of

each feature in domΣ and each feature item in defΣ . If all
the features and feature items are satisfiable, then the
component-based system is consistency.

6. Conclusions

The radical source of difficulty in component reuse may
be the comprehension gap between the component
creators and reusers in different contexts.
addresses this problem through a practical
knowledge-based modeling approach. One of its
advantages is the checking and reasoning mechanism can
be applied in the modeling process. However, there still
exist lots of problems for further investigation. For
example, we should find the solution to decrease the
complexities of time and space about Feature Space.

References

[1] Martin Blom, Eivind J. Nordby. “Semantic Integrity in
Component Based Development”. Project Report,
Mälardalen University, Sweden, March 2000.

[2] Felix Bachman, Len Bass, Charles Buhman, Santiago
Comella-Dorda, Fred Long, John Robert, Robert Seacord,
Kurt Wallnau. Technical Concepts of Component-Based
Software Engineering (Volume II), TECHNICAL REPORT
CMU/SEI-2000-TR-008May 2000.

[3] Yu Jia, Yuqing Gu. “Representing and Reasoning on Feature
Architecture: A Description Logic Approach”. Workshop on
“Feature Interaction in Composed Systems”, ECOOP 2001.

[4] Kang, K.; Kim, S.; Lee, J.; Shin, E.; & Huh, M. “FORM: A
Feature-Oriented Reuse Method with Domain-Specific
Reference Architectures”. Annals of Software Engineering 5,
5 (September 1998): 143-168.

14

[5] H. Milli, F.Milli, A.Milli. “Reusing software: Issues and
research directions”. IEEE Trans. On software Engineering,
21(6):529-561,1995.

[6] DoD, “Software Reuse Primer”, DoD Software Reuse
Initiative, http://dii-sw.ncr.disa.mil/reuseic/ pol-hist/ primer,
April 15, 1996

[7] Yu Jia, Yuqing Gu. “The Representation of Component
Semantics: A Feature-Oriented Approach”. Processing of
Workshop On Component-Based Software Engineering:
composing systems from components. 2002

[8] K. Czarnecki and U. Eisenecker. “Generative Programming:
Methods, Tools, and Applications”. Addison-Wesley, New
York, 2000.

[9] Yu Jia. “The Evolutionary Component-based Software

Reuse Approach”. PH.D. Dissertation. 2002
[10] F. M. Donin, M. Lenzerini, D. Nardi, and W. Nutt. “The

Complexity of Concept Languages. Information and
Computation”: pp.1-58, Vol. 34. 1997

[11] Ivica Crnkovic, Heinz Schmidt, Judith Stafford, Kurt
Wallnau. Anatomy of a Research Project in Predictable
Assembly. Fifth ICSE Workshop on Component-Based
Software Engineering White paper.
http://www.sei.cmu.edu/pacc/CBSE5/CBSE5-CFP.html,2002.

15

Version-based Approach for Modeling Software Systems

A. Speck1 S. Robak2 E. Pulverm̈uller 3 M. Clauss1

1Intershop Research
Intershop Tower

D-07740 Jena, Germany
a.speck@intershop.com

matthias.clauss@gmx.de
3Instytut Informatyki i Zarzadzania

Uniwersytet Zielonoǵorski
ul. Podǵorna 50

PL-65-246 Zielona Ǵora, Poland
s.robak@iiz.uz.zgora.pl

3Fakulẗat für Informatik, IPD
Universiẗat Karlsruhe

D-76128 Karlsruhe, Germany
pulvermueller@acm.org

Abstract

Since the first discussion about the software crisis in 1968
many concepts in order to improve the software develop-
ment and reuse have been introduced. Some of them like
frameworks or components aim on the reuse of code oth-
ers capture experiences with system architecture, design
or coding recommendations.

This paper focuses on a way to express the reuse of
pieces of software and design reasoning. We apply ver-
sions in order to describe sets of features we want to have
in a system. Conditions are used to formulate these re-
quirements.

Then these conditions are integrated into UML models
using the existing mechanisms for extensions. This en-
ables a tight integration of versions ands modelling con-
structs and enhances integrity of models.

The use of version is demonstrated by an example from
the eCommerce domain. This paper also discusses the
effects of the integration of versions into UML models.

1 Introduction

Software developers always have the generic problem to
structure their systems, to deal with the size and to mas-
ter the complexity of large systems. This is the reason for
the development of programming languages and compil-
ers and it is the motivation for the development of differ-
ent paradigms and methods for the software development.
Additionally more and more improved means to divide
and structure systems are introduced.

For the development of software systems, especially
large systems, modelling notations are used to provide
an abstract view on the system. The Unified Modelling
Language [16] provides a standardised modelling nota-
tion and includes mechanisms to introduce user-defined
extensions and adaptations for specific needs [21, 19].

In this paper we present an approach to define versions
of systems and subsystems. These versions are composed
by logical operations and serve as a model for the verifi-
cation of real systems. The versions are structured hier-
archically which means that versions of lower levels may
be part of higher level versions.

The advantage of the definition of software systems and

16

their variability in versions is that versions capture the
static dependencies within systems in the same way like
other meta models (e.g. UML). Moreover version systems
may be validated automatically which means that the ver-
ification of a specific system may be tool-based. The ver-
sion definition of components to be built in a system may
be checked against the needs defined in the version spec-
ification of the system. This eases the reuse of existing
systems and system components.

A first step towards such an integration of versions into
modelling tools is done by defining versions with UML
models. The version information is attached to its refer-
ring elements and can be extracted from the model to get
a view of the version model.

First we introduce the version concept in section 2. In
section 3 we demonstrate the use of version on an example
based on the features of a simple messaging system and
discuss the effects of modelling versions in UML.

2 Versions and Conditions

Software modules [17], the object-oriented paradigm [4]
and components [22] may be regarded as the base of the
proposed versioning approach. However they do not pro-
vide solutions for the problems caused by the existence of
multiple systems derived from one common base. Com-
ponent systems are typical examples for this problem:
There are a lot of technologies to combine software com-
ponents (plug them together) like CORBA or COM+ [22].
Means to assure that component systems are providing ex-
actly the services they are requested to perform are quite
rare. In this paper we will focus on the existence of differ-
ent realizations or implementations of systems built from
the same and / or similar components. How could the
combinations and variability within these different sys-
tems be handled and how could means to deal with these
problems be used to support the system development?

The concept of versions is well-known in the domain
of software development supported by version or revision
control systems like RCS or CVS [7, 14, 1]. These sys-
tems are used to administrate and store the different states
or versions of systems code during the implementation
phase. However such versioning systems are not the main
issue in our approach but may be applied to administer the
versions of our approach.

2.1 Version Model

We propose to apply versions for the architecture of
component systems. Our version model integrates con-
sistency and dependency management in a natural way
at design time. It allows to describe the dependencies
between components as well as the internal structure of
components (consisting of other components). A version
determines a software core which may contain other
versions and has to consist of a valid set of conditions.

Definition: (Version)
The symbol reflecting a version isV ki wherek repre-

sents the granularity (level0 defines the most low-level
granularity) andi gives the index distinguishing between
versions on the same level of granularity.

Now we can inductively define the construction of ver-
sions:

V ersion V 0
i = true ∧ Cond0

i

whereCond0
i represents the condition1 that has to be true

for one versionV 0
i on level0. V 0

i ∈ V 0 where

V 0 = {
∞⋃
j=1

V 0
j }

is the set of all versions on level0.
In the same way we can define the induction step:

V ersion V
(n+1)
i =

m∧
j=l

V nj ∧ Cond
(n+1)
i

with

Cond
(n+1)
i is true,

1 ≤ l ≤ m ≤ |V n| ,
V nj ∈ V n

In other words: a version is a set of conditions (a uni-
fication of the particular conditions of a certain version
and all conditions of the sub-versions contained in the ver-
sion). A condition is expressed as boolean expression.

The operands in such an expression are conjunction,
disjunction and negation.

1Several conditions may be unified in one condition.

17

The use of the boolean operations conjunction, disjunc-
tion and negation allows to apply all techniques to min-
imise the terms (the number of components and their re-
lations) which are known from the domain of digital elec-
tronics. Additionally simple verification tools may pro-
vide checks to verify whether the set of components is
valid, e.g. all required components are included or forbid-
den components do not exist in the systems. One example
for such a tool is introduced in [13].

Requirements
Level

Implementation
Level

F1
F2

F3

U2

U4

U6U1 U3

U5

Implemented by Implemented by

Set of
Features
F1, F2, F3

Set of
Implementations
U1, ..., U5

Set of alternative
Implementations
− all i mplementing
 Feature F1

Figure 1: Relationship between Requirements and Imple-
mentation

2.2 Conditions and Features

The version model introduced in the previous section is
based on conditions which determine whether a version
is valid or not. Conditions are the mechanisms to con-
trol versions. In contrast to these, features describe the
requirements and the properties of systems. E.g. in the re-
quirements engineering phase of e-business systems spe-
cific business processes may be considered as features
which have to be part of the system. During the devel-
opment these features must then be realized by software
components.

Conditions may be used to formalise features. A spe-
cific version containing a specific condition realizes there-
fore the feature(s) corresponding to this condition.

There are two different types of features and conditions
describing the features. They depend on the phase when

they occur or when they are considered. The ones are
referring to the high-level requirements the others to indi-
vidual implementations.

• Requirements Engineering:
During the requirements engineering phase features
are identified. A powerful means to do that is do-
main engineering [9] which in particular helps to de-
tect and capture re-occurring and thus reusable con-
ditions on the requirements level for a certain do-
main. When modelling the commonalities and dif-
ferences of a domain, e.g. in a feature model [11, 9]
it is possible to extend this model by additional se-
mantic information or even derive logical formulae
directly from the model (the model already captures
semantic relationships as feature interdependencies
respective composition rules).

• Implementation:
Systems are implemented by composing compo-
nents. Currently there are different system genera-
tors or generator architectures [9]. The composition
is performed according to the condition rules defined
in the requirements engineering phase.

There is a clear connection between these two levels
as exposed in figure 1. Formally this relationship can be
expressed as follows:U1, U2 ∈ Set1; F1, F2 ∈ Set2
whereSet1 is the set of implementation units andSet2
is the set of features on the requirements level. Assuming
thatU1 implements (besides others) featureF1 andU2
implementsF2 then:

valid(U1, U2)⇒ valid(F1, F2)
valid(F1, F2) 6⇒ valid(U1, U2)

with function

valid(X,Y) =

true : X and Y form a

valid combination
false : X and Y form an

invalid combination

Functionvalid(X,Y) may be calculated by evaluating
the binary condition expressions.

The distinction between requirements and implementa-
tion level is not only limited to the development phase of

18

a system or concerns but also exists in the maintenance
phase where additional conditions may appear. This is
due to the fact that it is impossible to capture all relevant
dependencies and conditions from beginning. Additional
conditions are added as needed or detected in a piecemeal
growth manner [8].

3 Application of Versions in Soft-
ware Models

Versions could be used when a system is developed from
scratch. In such a case versions help to deal with the vari-
eties that occur due to alternative design decisions which
allow different versions of a specific design. Additionally
versions help to define proper subsystems which may then
be included in the system.

Nevertheless, versions may also be applied in systems
that are already established and exist as different releases.
In such cases versions may be used to define specific de-
sign alternatives within a given system family.

<<concept>>
MessagingSystem

<<mandatory>>
Contents

<<alternative>>
News

<<mandatory>>
Protocol

<<alternative>>
EMail

<<alternative>>
Messaging

<<alternative>>
ICQ

<<alternative>>
AIM

<<alternative>>
unix-talk

<<optional>>
MIME encoding

<<optional>>
Encryption

<<mutex>>

<<requires>>
{xor}

Granularity
Level: 3

Granularity
Level: 2

Granularity
Level: 1

Granularity
Level: 0

Figure 2: Feature Diagram of a Messaging System

3.1 Reuse Problem

An example for systems which are usually derived from a
set of generic functionality are customisable components.
Unfortunately almost none of the target systems are really
the same since each customer has very individual wishes.

We demonstrate this problem at a comparative simple
example: a generic messaging system that can be part of

a more complex system. Figure 2 depicts the feature dia-
gram of this system according to the notation introduced
in [6]. The feature diagram shows the variability accord-
ing to the experience of different already existing subsys-
tems.

In the example the highest granularity level 3 comprises
the whole system denoted byMessaging System. It con-
tains the mandatory featureContentsthat is not subject of
our example. The focus of this example is on the feature
Protocol abstracting a technical requirements of the sys-
tem. The messaging system can be enhanced by adding
support for encryption orMIME-encodingof messages.
The coarse-grained featureProtocol can be further de-
composed into different protocols for message transport.
The coarse-grained featureProtocol can be further de-
composed into different protocols for message transport.

TheMessaging Systemprovides of mandatory features
like ContentsandProtocol. Moreover it has optional fea-
tures (e.g.Encryptionor MIME encoding). TheProtocol
consists of one or more of the alternative protocol types
(e.g.News, Messaging, EMail or unix-talk). Messaging
has eitherICQ or AIM, both are impossible. The feature
tree is cross-cut by cross-tree constraints. These relation-
ships can not be represented by a strict feature hierarchy.
Cross-tree constraints describe the feature interactions not
recognised by the feature hierarchy. For this messaging
component the optional encryption of messages con not
be used with theunix-talk protocol. In the example we
have both types of cross-tree constraints: the mutual ex-
clusionmutex which prohibits the combination ofunix-
talk protocol andEncryptionand the requires cross-tree
dependency betweenEMail andMIME encoding2.

All the relationships in the feature diagram in UML-
notation may be mapped to the logical version operators
presented in section 2. Mandatory features may be ex-
pressed by a logicaland, options byor, strict alternatives
as well as mutexes byxor and requirement cross-tree con-
straints again withand.

If such systems are getting bigger they can consist of
a very large number of small subsystems. All the depen-
dencies and relations of such a large system can not be
controlled by human beings since it is just too complex.

A solution how to deal with the complexity of large(r)
systems is to construct them from smaller subsystems

2Multi-purpose Internet Message Extension

19

whereas their features are synthesised from other features.
The logical model of a complete system is built by in-
serting the logical formulae of the sub-features (of lower
granularity level) into the logical formulae of the sub-
features. Then the large model captures all the possible
variability of the system and serves as a base for building
versions of the system. This decomposition of a complex
system is exemplarily shown on the example in figure 3.
It shows the version of some features and captures their
conditions for valid compositions. These conditions can
be much more detailed than it is reasonable in feature di-
agrams and therefore describe detailed composition rules
on requirements level.

V 3
i ’Messaging System’= (V 2

0 ’Contents’∧V 2
1 ’Protocol’) ∨

V 2
2 ’Encryption’∨V 2

3 ’MIME encoding’

V 2
1 ’Protocol’ = V 1

0 ’News’ ∨V 1
1 ’Messaging’∨ ...

V 1
1 ’Messaging’ = V 0

0 ’AIM’ ∨ V 0
1 ’ICQ’

Figure 3: Versions of the Messaging System

3.2 System Version

A concrete version of a system is built by the concrete
choice of alternative versions. This design has to be done
according to the given rules in a feature model defined by
the system version and its sub-versions (e.g. modeled in a
feature diagram like in figure 2).

In the best case the components realizing the features
of the versions already exist. In such a case the appro-
priate component may be inserted into the place within
the system. The features of the version indicate which
component has to be integrated and may serve as a speci-
fication against which the components of the real system
and their arrangement may be checked.

If there are no components available to implement a
version the version definition specifies the requirements
of the component(s) to be newly developed. In contrast to
other requirements definitions likeUse Cases or lists of
non-functional requirements the versions give a compara-
tively precise definition of the needs since they are derived
from the surrounding existing pieces of a system. Addi-
tionally they integrate non-functional and functional re-

quirements in a natural way which means that they clearly
show which functionality at which place of the system re-
alizes or supports a non-functional requirement and inter-
acts with which other sub-versions (realized by compo-
nents).

Figure 4 depicts some components of a implementation
of theMessaging System. The components and their ar-
rangement are derived from the version model as given in
figure 2.

A version (with its sub-versions) may be realized in two
ways:

1. Inclusion:
The Messaging System includes other components
defined by the sub-versions (Contents, Protocol , En-
cryption andMIME encoding).

2. Facade:
The super-version may also serve as a facade of the
sub-versions. Usually this happens when a super-
component does not only contain sub-versions but
also controls the sub-versions. The componentAb-
stractMessaging of figure 4 is such an example. It
has sub-versions and controls and triggers their ser-
vices.

MessagingSystem

MessagingComponent

ProtocolHandler

SMTP_Client

{ Version = valid('MIME_Plugin') }

AbstractMessaging

ICQAIM

<<controls>>

{ Version = valid('AIM')
xor valid('ICQ') }

{ Version = ... } { Version = ... }

EncryptionPlugin

MIME_Plugin
{ Version = true }

Figure 4: Components of the Messaging System

20

3.3 Using versions in UML models

Figure 4 also exemplarily shows the notation of versions
in UML models. The version assigned to a specific mod-
elling element (as components and classes) is denoted as
the tagVersion having a logic formulae as value. This
tag is typed as a BooleanExpression (metaclass defined by
UML, ([16] pages 2 – 79) and can therefore be evaluated
to either true or false. If the evaluation of the versions
condition results in true this version is valid and can be
included in the system.

The syntax of the value must always result in a boolean
value at computation. It can be described, e.g., in natural
language, as mathematical formulae or as OCL3 expres-
sion according to the UML’s definition ofBooleanEx-
pression . In the example we prefer the latter since its
syntax is well-defined and enables the textual description
of mathematical expressions.

To refer subversion in a version expression we use the
function valid defined in section 2.2. Its definition in
OCL syntax is:

valid (elementname : Name) : Boolean

It checks the correctness of the version of the model el-
ement whose name given in the argument. If the version
of this element is valid, the function returns true, other-
wise false. This way it is used to reference other versions
in OCL constructs the same way as a version refers to a
subversion.

Having this function the description of a version ac-
cording to the definition in section 2.1 can be completely
mapped to an OCL expression. Moreover the version of
a modelling element is given in place of the element it-
self thus improving integrity of the model and enabling an
easy tracing from a version to its according system arte-
fact.

3.4 Meta-model problems of UML

The need to use a functionvalid shows a problem in
using UML: UML is designed for modelling single soft-
ware system and therefore lacks of support for describing
generic systems [5]. Generic systems (sometimes called
meta-modelling) describe an abstract system design in-
cluding variabilities that are bound to derivate the design

3Object Constraint Language

of a concrete system. You can also look at generic mod-
els as an meta level between the model level (named M1)
and the meta-model level (M2) of the UML. This virtual
meta-level is like M1 since it uses constructs defined in
M2 but on the other hand it serves as abstraction of M1
and is therefore not identical with M1.

This missing meta-level for generic modelling prohibits
the direct evaluation of a versions condition denoted in
OCL. Despite this is not a real disadvantage since there
is currently no known modelling tool that integrates the
evaluation of OCL expressions into the modelling pro-
cess. Instead it is possible to extract the version informa-
tion from the model, e.g. using XMI, and generate input
for a model-validation tool from it. Concluding currently
the OCL serves as well-defined and standardised expres-
sion language that can be translated in any language sup-
ported by modelling or validation tools.

4 Related Work

The version approach of this paper is influenced by prior
work about versioning at Bell Laboratories and in [20],
for instance. A similar approach of describing systems in
versions by applying logical formulae to describe their re-
lationships may be found in [24]. It keeps close to feature
logic while our approach concentrates on the realization
and concrete application in a component world.

Methods and techniques which are covered by the
area of “Separation of Concerns” such as Aspect-oriented
Programming [12], Subject-oriented Programming [10],
Composition Filters [2], Adaptive Programming [15] and
generators like GenVoca [3] or system generators in gen-
eral [9] may be used to realize tools to support the version
approach we proposed in this paper. An application of
such a technique may be found in [18].

The modelling notation used for the feature model is
based on prior work on modelling variabilities in UML
[6]. Meta-modelling techniques for software system fam-
ilies are described in [23]. Generic modelling in UML has
been discussed in [5].

21

5 Conclusion

This paper proposes a version-based approach for the de-
velopment of component systems. The versions may be
arranged hierarchically and define a set of features which
may be realized by components. The feature set of a spe-
cific version is determined by logical formulae.

The description of the static relationships and their vari-
ability (versions) in logic allows a tool-supported valida-
tion. The issues of such a validation may be the consis-
tency of a system specification especially when parts of
this specification are reused. Moreover the definition of
components may be verified against the requirements of a
version system specification. Also it supports to derive a
specific version (with special conditions) from an existing
versions system.

The descriptions of variants directly in the model en-
ables a tight integration and provides the first step to-
wards tool support for the versioning concept. Modelling
tools can extract the version information directly from the
model and provide it to any validation tool for evaluation.

Further steps in our work may be to handle not only
boolean conditions but also fuzzy requirements and spec-
ification of reused components. Since the un-precise ana-
logue expression of requirements seems to be much more
natural than digital decisions such an approach may im-
prove the version-based system engineering considerably.

Additionally our version concept does not cover the dy-
namic behaviour of systems. The introduction of the sys-
tem’s activities will provide important additional informa-
tion.

References

[1] RCE, VRCE, BDE; RCE: the Revision Control Engine.
http://wwwipd.ira.uka.de/˜RCE/, 2001.

[2] M. Aksit. Composition and Separation of Concerns in the
Object-Oriented Model.ACM Computing Surveys, 28(4),
December 1996.

[3] D. Batory and B. Geraci. Composition Validation and
Subjectivity in GenVoca Generators. InIEEE Transac-
tions on Software Engineering, pages 67 – 82, 1997.

[4] G. Booch. Object-Oriented Analysis and Design, Second
Edition. Benjamin/Cummings, Redwood City, CA, 1994.

[5] M. Clauss. Generic Modeling using UML extensions
for variability. In Proceedings of OOPSLA Workshop on

Domain-specific Visual Languages, pages 11 – 18, Tampa,
FL, USA, 2001.

[6] M. Clauss. Modeling variability with UML. InProceed-
ings of the Young Researchers Workshop GCSE’01, Third
International Symposium on Generative and Component-
Based Software Engineering, Erfurt, Germany, September
2001.

[7] R. Conradi and B. Westfechtel. Version Models for Soft-
ware Configuration Management.ACM Computing Sur-
veys, 30(2):232 – 282, 1998.

[8] J. O. Coplien. Re-evaluating the Architectural Metaphor:
Towards Piecemeal Growth, Guest editor introduction
to IEEE Software Special Issue on Architecture Design.
IEEE Software, 16(5):40 – 44, 1999.

[9] K. Czarnecki and U. Eisenecker.Generative Program-
ming - Methods, Tools, and Applications. Addison-
Wesley, 2000.

[10] O. H. and P. Tarr. Using Subject-Oriented Programming
to overcome common Problems in Object-Oriented Soft-
ware Development/Evolution. InProceedings of the 1999
International Conference on Software Engineering, pages
687 – 688, May 1999.

[11] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson.
Feature-Oriented Domain Analysis (FODA) Feasibility
Study. Technical Report Technical Report CMU/SEI-90-
TR-021, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, 1990.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. InLNCS 1241, ECOOP. Springer-Verlag,
June 1997.

[13] H. Klaeren, E. Pulverm̈uller, A. Rashid, and A. Speck. As-
pect Composition applying the Design by Contract Prin-
ciple. In Proceedings of the GCSE’00, Second Interna-
tional Symposium on Generative and Component-Based
Software Engineering, LNCS, Erfurt, Germany, Septem-
ber 2000. Springer.

[14] E. Lippe and G. Florijn. Implementation Techniques
for Integral Version Management. InProceedings of
ECOOP’91, European Conference on Object-Oriented
Programming, LNCS 512. Springer, 1991.

[15] M. Mezini and K. Lieberherr. Adaptive Plug-and-Play
Components for Evolutionary Software Development. In
ACM SIGPLAN notices, volume 33, October 1998.

[16] Object Management Group,
http://www.rational.com/uml/resources/documentation/.
Unified Modeling Language (UML) Specification version
1.3, June 1999.

[17] D. Parnas. On The Criteria To Be Used in Decompos-
ing Systems into Modules.Communications of the ACM,
15(12):1053 – 1058, December 1972.

22

[18] E. Pulverm̈uller, A. Speck, and J. O. Coplien. A Version
Model for Aspect Dependencies. InProceedings of 2nd
International Symposium of Generative and Component-
based Software Engineering (GCSE 2001), LNCS, Erfurt,
Germany, September 2001. Springer.

[19] S. Robak, B. Franczyk, and K. Politowicz. Extending
UML for Modeling Variability for System Families.Inter-
national Journal of Applied Mathematics and Computer
Science, 12(2), 2002.

[20] M. Rochkind. The Source Code Control System.IEEE
Transactions on Software Engineering, SE-1(4):364 –
370, December 1975.

[21] S. Szostak, S. Robak, R. Stryjski, and B. Franczyk. UML
extensions for modeling real-time and embedded systems.
In Discrete - Event System Design - DESDes ’01 : Pro-
ceedings of the International Workshop, pages 109 – 114,
Zielona Ǵora, Poland, 2001.

[22] C. Szyperski. Component Software.Addison-Wesley,
ACM-Press, New York, 1997.

[23] J.-P. Tolvanen and S. Kelly. Modelling languages for prod-
uct families: a method engineering approach. InPro-
ceedings of OOPSLA Workshop on Domain-specific Vi-
sual Languages, pages 135 – 140, Tampa, FL, USA, 2001.

[24] A. Zeller and G. Snelting. Unified Versioning through
Feature Logic.ACM Transactions on Software Engineer-
ing and Methodology, 6(4):398 – 441, 1997.

23

Stable and Reusable Model-Based Architectures

Ahmed Mahdy, Mohamed E. Fayad, Haitham Hamza, and Peeyush Tugnawat
Computer Science and Engineering Dept.

University of Nebraska-Lincoln
Lincoln, NE 68588, USA

{amahdy, fayad, hhamza, peeyush}@cse.unl.edu

Abstract

The purpose of this paper is to show, by the use of
examples, how software stability provides model-based
reusability. The strengths of Enduring Business Themes
and Business Objects are shown; they can be reused
among common-core applications without change. Three
case studies are modeled. These case studies show how
Software Stability Models (SSMs) can be reused as a base
for single or multiple applications. The key contribution
of this paper is in showing that SSMs are indeed reusable,
stable over time and help to avoid the hassle of
reinventing the wheel in software development.

1. Introduction

“ Why should we reengineer a whole system if only the
exterior part has changed?” this question was the main
motive behind the introduction of Software Stability [2].
SSMs are based on the concepts of Enduring Business
Themes (EBTs) [1, 2, 3, 4] and Business Objects (BOs)
[2, 3, 4]. Both of these concepts address the core
knowledge of the system and how well this core
knowledge is understood.

The way SSMs are built directly guarantees system
reusability. They provide a stable core that can serve one
or more applications that share similar goals. Accordingly,
we should be able to build multiple systems that have
identical cores. This is what reusability is all about.

This paper emphasizes the reusability of SSMs. In
section 2, software stability is briefly introduced followed
by a discussion of reusability as a software stability merit.
In section 3, three different systems are modeled using
stability concepts to show the reusability of SSMs. Section
4 concludes the paper.

2. Stable and Reusable Architectures

A SSM can be partitioned into three different levels:
EBTs, BOs, and Industrial Objects (IOs). EBTs represent

intangible objects that remain stable internally and
externally. BOs are objects that are internally adaptable
but externally stable, and IOs are the external interface of
the system [2]. In addition to the conceptual differences
between EBTs and BOs, a BO can be distinguished from
an EBT by tangibility. While EBTs are completely
intangible concepts, BOs are partially tangible. These
artifacts develop a hierarchal order for the system objects,
from totally stable at the EBTs level to unstable at the IOs
level, through adaptable though stable at the BOs level.
The stable objects of the system are those do not change
with time. Some common-core systems may look
different, but in fact, the only differences lay on the
surface (i.e. IOs). If they have a common internal
structure, why should we deal with them differently? It
suffices to develop one system for all of these similar
applications. At this point, the importance of SSMs
becomes apparent. The more the systems share, the less
will need to be changed. Changes will be made to the IOs,
the EBTs and BOs need not be touched. Figure 1 shows
the Stable Models Architecture. The EBTs represent the
nucleus of the model, while the IOs represent the surface
of the system. The BOs lay in between. Intuitively, the
further objects are placed from the interface the more
stable they will be. As a result, common-core applications
share the inner layers (i.e. EBTs and BOs), and differ at
the outer layer.

Figure 1. Stable Models Architecture

IOs

EBTs

Less Stable

BOs

24

3. Case Studies

In this section of the paper, three applications are
modeled. On the surface these applications appear to be
different. However, they can all be developed on a
common core using software stability. As discussed in
section 2, the EBTs and BOs remain the same among
applications with a common core.
Case I- Computers Trading
This case study depicts the trading of computers using a
bidding process. One individual identifies the needed
specifications, maximum price… etc. Another individual
or entity replies back, if interested. A negotiation process
takes place, until a deal is struck or an impasse is reached.
Involved entities might be computer shops, dealers,
manufacturers, or even individual users. If an agreement is
reached, the deal is finalized A stable model for this
application is shown in Figure 2.

The model has four EBTs: Trading, Negotiation,

Inspection, and Bidding. Trading is an enduring theme
because it remains stable externally and internally as long
as this system lasts since the main objective is to sell/buy
computers. As for Negotiation, the bidding process
conceptually implements the negotiations between the
different entities. Again, it remains as a concept of this
system as the system will forever be based on
negotiations. Inspection is an enduring concept in any
trading as the buyer inspects the product she is interested
in. Bidding is also an enduring object since one of the

main purposes is to have the ability to bid on certain
items. Bid, Agreement, Features, and User represent the
BOs. Each of these objects is externally stable though
highly adaptable internally, for example the user is always
a user to the system although he maybe an individual or a
shop.
Case II- Buying a House
Trading a house is much more complicated than trading a
computer. They look different, however they share the
same core. When you buy a house, aren’t you trading,
negotiating, and bidding? The answer is yes, so buying a
house is not that different from buying a computer. Thus,
the EBTs and BOs can and should be the same. Figure 3
shows the stable model of this case study.
Case III- Bidding on a Football Team
Does the concept of buying a football team look different
from the concept of buying a computer? Yes, it looks
different, but using a similar argument as provided in

Case II is applicable to this application. As in a house
purchase bidding process, it starts by placing a bid. If it is
reasonable, negotiations take place until an agreement is
reached or an impasse reached. The deep structure is the
same as for the other two case studies. Figure 4 shows a
stable model.

Although the three case studies deal with different
types of trading, the inner core is the same among these
applications. Recognizing this fact results from how
software stability approaches the problem domain.
Identifying the system EBTs directly reflects the goals of
the application. If different applications share the same

Figure 2. Computers Trading Stable Model
EBTs BOs IOs

Individual

ComputerShop

Accessories

Packages

Computers

Peripherals

Bidregulate

negotiate

deal

trade agree

bid

*

1..*

2..*1..*

1..*
1..*

1..*

1..*

2..*

0..*Bidding

Negotiation User

Trading

Inspection Features

*

modify

Agreement

addendum

25

Figure 3. Buying a House Stable Model

EBTs BOs IOs

Figure 4. Bidding on a Football Team Stable Model
EBTs BOs IOs

Individual

Broker

House

Bid

Inspection

regulate

negotiate

deal

trade agree

bid

*

1..*

2..*1.. *

1..*

2..* Contractor

0..*Bidding

Negotiation

Trading

User

Features

Agreement

addendum

*
modify

Individual

Sponsor

Bidregulate

negotiate

deal

trade agree

bid

*

1..*

2..*1..*

1..*
1..*

2..*

MemberInspection Team

Equipment Field

Properties

Player Manager Staff

Bidding

Negotiation

Trading

User

0..*

Features

modify

*

Agreement

addendum

26

goals, it would be easy to determine their similarities by
following the stability approach. Moreover, the BOs most
probably will be exactly the same. The only differences
would appear at the IOs level. In our case studies, the
three applications have the same EBTs and BOs. Figure 5
plots the three stable models on top of each other to show
how their similarities.

As shown in the figure, the EBTs and BOs of the three

applications are identical. The various IOs from each
application are depicted using a different color (i.e. light
gray for Case I, black for Case II, and dark gray for Case
III). The message that we get from this figure is that if we
develop one of these applications, it will not be necessary
to develop other applications from scratch. In fact,
minimal work needs to be done, mainly with the IOs, and
we obtain a model for the new applications. Although the
purpose of using software stability in model-based reuse is
similar to that of domain engineering, software stability is
not bounded to domain-oriented reuse. In fact, the

reusability of SSMs comes naturally as a result of having
stable cores.

4. Conclusion

Software Stability goes deep into the structure of the
system fleshing out the core knowledge of the system.

Having this knowledge about the system, a stable core can
be well engineered. This stable core not only serves this
application, but also can be reused to build similar
applications, similar in the sense that they share only that
common core. Limiting the required similarity to the core
widens the domain of applicability.

In conclusion, software stability models are reusable.
The examples studied in this paper show the reusability of
the EBTs [1, 2, 3, 4] and BOs [2, 3, 4], as they remain
common among different applications due to their stable
nature.

Figure 5. Combined Stable Models
EBTs BOs IOs

Individual

Sponsor

regulate

negotiate

trade
agree

bid

*

1..*

2..*1..*

1..*
1..*

2..*

Player Manager Staff

ComputerShop

Broker

deal

Contractor

1..*

Bid

FieldEquipment

Inspection Team

Properties

House

Member

Computers Properties

Accessories
1..*

1..*
1..*

Peripherals
 1..*

Bidding

User

Features

0..*

*

addendum

Agreement

modify

Negotiation

Trading

27

5. References

[1] M. Cline and M. Girou, “ Enduring Business Themes” ,

Communications of the ACM, Vol. 43, No. 5, May 2000,
pp. 101-106.

[2] M.E. Fayad, “ Accomplishing Software Stability” ,

Communications of the ACM, Vo. 45, No. 1, January 2001,
pp 95-98.

[3] M.E. Fayad, and A. Altman, “ Introduction to Software

Stability” , Communications of the ACM, Vo. 44, No. 9,
September 2001, pp 95-98.

[4] M.E. Fayad, “ How to deal with Software Stability” ,

Communications of the ACM, Vo. 45, No. 4, April 2002,
pp109-112.

28

29

Stable Model-Based Software Reuse

Mohamed E. Fayad, Shasha Wu, and Majid Nabavi
Computer Science and Engineering Dept.

University of Nebraska-Lincoln
Lincoln, NE 68588, USA

{fayad,shwu}@cse.unl.edu and mnabavi@unlnotes.unl.edu

Abstract

 Model-based software is expected to provide a higher-
level of reusability than the software that came before.
However, conventional models do not satisfy this
expectation because they can become unstable when
changed. The Software Stability Model (SSM) offers an
innovative approach to expressing the core purpose of a
problem and a method to realize that approach that
typically yields extensible and stable design models. SSM
especially emphasizes the model’s stability over changes,
a critical issue in the realm of software reuse.

1. Introduction

 Computer techniques have progressed very rapidly in
the past 20 years. Every year, researchers and
manufacturers make computers more and more powerful.
At the same time, the size and complexity of software has
also increased. This situation has caused the problem of
how to efficiently utilize previous works in software
development to grow into a critical issue in the field of
software engineering. When we compare software
systems, we usually find 60% to 70% commonality from
one software application to another [1]. People have
generated many approaches to achieve the goal of
software reusability and progress has been made every
year. Design Patterns, tests cases, prototypes, plans,
documentation, frameworks, and templates are all
progeny of this goal of reuse. Among all of these
approaches, object-oriented modeling provides the best
high-level description of software. Therefore, we expect
that model-based reuse would provide a higher level of
reusability in software development. However,
conventional modeling approaches cannot satisfy this
expectation.
 Unlike the products of other engineering fields, there
are few extra costs or physical impediments to the
implementation of software in different locations. All
copies of the software are exactly the same. Software
should have excellent reusability. Unfortunately, the
problems for which software is designed are always

different. Every specific problem has its particular
requirements, even if their main purposes are very similar.
Currently, when we try to reuse an existing conventional
model, a re-engineering process is inevitable in most
situations. It does not matter if the change is due to new
technology or a change in clientele [2]. The reusability of
the conventional model is very limited. On the other hand,
the stable and extensive nature of the Software Stability
Model (SSM) naturally makes it a better approach for
reuse. To demonstrate the advantages of the Software
Stability Model in reusability, we shall apply the SSM to
a case study of open-pit mining1 and compare it with
corresponding conventional models.

2. The Case Study

2.1. Original problem
Underlying the requirements of open-pit mining is a
common transportation problem (Figure 1) [5]. In an
open-pit mine, mechanical shovels load material from
depots into dump trucks. These trucks then transport
material to various destinations. Ore is transported to
mineral processing facilities to be processed and prepared
for market. Waste is delivered to dumps.
 A scheduling or dispatching system is required to
assign the empty trucks to proper destinations at proper
times. This system checks the status of each truck and
shovel. As soon as a truck“s status is "free", it is assigned
to a shovel that will be free when the truck arrives. If all
of the shovels are busy, the dispatcher system selects the
shovel with minimum wait time.
 A conventional model for this problem is given in
Figure 2. The model illustrates how the transport system
works. There is extracted "Ore" in "Ore Extraction
Openings" and "Waste" rocks in "Waste Removal
Openings". This material is transported to a "Mineral
Processing Facility" and "Waste Dumps" respectively.
"Dump Trucks" are assigned to these openings according

1 The detailed description of this problem can be found at
http://www.cse.unl.edu/~fayad/SoftwareStability/OOPSLA01-
DesignFest-Final1.doc.

30

to a "Schedule". "Shovels" load "Ore" and "Waste" into
these trucks.
 The desired solution to this problem optimizes the
operation of the trucks and the overall efficiency of the
mining operation. The goal of the system is to maximize
profitability of the mine and to satisfy production quotas.

With the stability approach, we first define the purpose
of the system and delineate why the system is needed.
Although this aspect of analysis is not unique to the SSM,
SSM formalizes the analysis and focuses the analysis
activities around the concept of Enduring Business
Themes (EBTs). Enduring Business Themes are the core
abstractions of a problem domain. These are the themes
that are unlikely to change over time. For example, one
important theme of the open-pit mining problem is
”Efficiency„. The concept of efficiency clearly has a role
as an EBT, because without efficiency there is no purpose
for the scheduling system. When we derive a schedule for
trucks, we are actually trying to make our system work
more efficiently, hence, more profitably.
 Another important theme is concurrency. Consider the
interaction between different components of the transport
system; they are assigned to work together when they are
available. Dump trucks are assigned to shovels; trucks
and shovels can only work together when shovels are
available. In other words, they have concurrency. This
concept is also used to understand material flow through
the conveyor belt and pipeline systems. Any of the
components in the system has to pass a specific amount of
material to the next component within a specified time
period. All of these material flows have to be equal in a
system and all the components of the system must be
available and working at the same time, to be concurrent.
Without this concurrency we cannot design a transport
system; there will be materials congestion and system

 failure. Therefore, it is a very important concept and one
of the core purposes of our scheduling system.
 After identifying the enduring business themes
associated with our problem, we can identify and
associate those Business Objects that provide the
necessary abstractions of the processes that underlie the
business operations (such as Origin, Destination and
Transport). The third step of the Software Stability
Process is to define those Industrial Objects (IOs) that
refine (or instantiate) the various Business Objects. The
result of this process is displayed in figure 3.

2.2. “ New” problem
We can readily imagine that over time or across several
mining pits, production techniques or mining conditions
could change. Perhaps conveyor belts are used as the
main transportation methods instead of trunks. In this
method, loaders carry materials from the depot and dump
it into feeders placed a short distance from the extraction
site. The feeder feeds a crusher at a steady rate and the
crusher reduces the size of the rocks to a proper size for
transport by conveyor belt. The whole system must be
consistent in terms of the capacity of materials flow.
Loaders must carry the required volume of material in a
time say, ton/hour, the feeder must feed the crusher at the
same rate and the crusher must deliver the same amount
of material with the proper size to the conveyor belt.
Conveyor belts, in turn, must have the proper width and
speed to transport the material. If any of the elements of
this system fails to keep up with the required rate of
materials flow, there will be a material congestion at that
point and the whole system will fail to achieve its goal of
transporting the designed quota of material to the
destination.

W aste Dum p

P1

1W

6 8

W2

M ineral Processing Facility

109 7

2P

W 3

5
4

3

2
1

N

Figure 1. Open pit mining [5]

31

With the introduction of the new technique, the old

model fails to satisfy the business requirements. We must
modify it. A new class diagram might be generated as in
Figure 5, and we note that the new model bears little
resemblance to our original model, nor would it satisfy
the requirements of our first open pit mine.
Since the core purpose of the problem is unchanged
during this alteration, we can directly reuse the previous
stability model by modifying or adding some IOs. Most
of the contents in figure 3 are reused in Figure 6. Some
new IOs are Feeder, Loader, Crusher, and Conveyor.
Acting as the core part of the model, our EBTs and BOs
are unchanged in these two models.

2.3. The third change
Consider the idea that other locations may use a pipeline
as the transportation mode. Figure 7 [5] characterizes the
pipeline technique. Here, material is loaded into feeders
by loaders. Each feeder passes the material to a crusher
and then on to a ball mill. Ball mills reduce the size of the
materials and prepare them for transportation through
pipelines. The milled materials are poured into mixers,
where water is added to them, making slurry, which is

then pumped into the pipeline. The pipeline then conducts
the material to the destination. With conventional models,
the tendency is to remodel as in Figure 8 and again, the
result is a substantial change. As in the previous
modifications, the core purpose of the problem is still
unchanged during this evolution. Therefore, simply by
adding some IOs, we can cater to this new change. In
figure 9, these new objects include pump, pipeline, mixer,
and ballmill. It is obvious that our EBTs and BOs are still
constant and reused in the new model.

2.4. More possible extensions
We can consider the pipeline transport method as a
general method of transporting liquids like oil and water.
What is the similarity of this system with transporting
rocks and soil? Let“s explain the model of transport for
oil and then develop the model to see how it can fit into a
transport model.
As we can see in figure 10, crude oil is extracted from the
oil well, and depending on the nature of the oil reserve
some pressure control process is necessary to get the flow
under control. This is a complicated operation and out of
the scope of transport. After controlling the extracted oil,
it has to be transported to refineries or reserve tanks in

Ore W aste

Mat erial

Shovel

n

1.. n

Mineral_Processing_
Facility

DumpTruck

1

n

1

n

delivers

W aste_D
ump

1..n

n

delivers

1..n

n

W aste_Removal_
Opening

n

1 .. n 1

1..n

Schedule

1

n

1

n
schedules

n

1

n

1

schedules

1..n

1

1..n

1

assigns resource

Ore_Extraction_
Opening

n
1..n

1

1..n

1..n

1
assigns resource

1..n

1

loads
n

1.. n

work s on

1

1..n

work s on

1

1..n

extract
n

1 .. n

extract

n
1..n

Figure 2. Typical class model for open pit mining [5]

32

ports. The pumping system pumps oil into the pipeline;
several pumping stations may work along a pipeline to
keep the pressure high enough to propel the flow at the
desired speed. The traditional model of this transport
system (figure 11) is quite different from the material
transport system we have developed for the mining
industry.
 What changes are needed to adapt our mining transport

system to this new transport system? Very few changes
are actually needed. We only need to add some new IOs
such as ”Oil Well„, ”Tank„, and ”Pressure Control„ to the
model in figure 9. Comparing figure 3, 6, 9, and 12, we
can easily see that during all of these modifications, our
EBTs and BOs remain the same. We duplicate them again
and again to satisfy many different requirements, thanks
to the Stability Model.

EBT BO IO

WasteRemoval
Opening

Waste

1..n

1

1..n

1

extract

Mineral Processing
Facility

WasteDump

OreExtraction
Opening

Ore

1..n

1

1..n

1

extract

Concurrency
Availability
WorkLoad

WorkLoadAnalysis()
CheckAvailability()

Efficiency
Cost
Benefit

Cost_Benefit_Analysis()

Transportation
TransportMethod
RouteConstraint
MaterialAttributes

MethodSelection()

1

1

1

1

provide information

DumpTruck

1

1..n

1

1..n

delivers

1

1..n

1

1..n

delivers

Material
Volume
Size
Quality

Schedule
TimeFrame

AssignResouces()
TrackWorkFlow()

n

1

n

1
use

n

1

n

1

Evaluate

Shovel

1

1..n

1

1..n

works on

Transport
Capacity
Capability
Reliability

CoordinateOperations()

n

1

n

1

schedules

n1 n1 selects

n

n

n

n

move

Origin
Place
Accessibility1 n1 n

allocate resource

1..n

1..n

1..n

1..n

connects

1

1..n

1

1..n

works on

Destination
Place
Accessibility

1

n

1

n

allocate resource

1..n

1..n

1..n

1..nconnects

Figure 3. Class diagram of stability model for open pit mining

33

Material depot Loader

Feeder

Crusher

Conveyor belt

Figure 4. Transport materials by conveyor belt [5]

Waste
Waste_Removal_

Opening
n 1..nn 1..n

extract

Ore Ore_Extraction_Op
ening

n 1..nn 1..n

extract

Waste_D
ump

Mneral_Processing_
Facility

Conveyor

1

1

1

1
delivers

1

1

1

1
delivers

Crusher

11 11

feeds
Feeder

11 11

feeds

MaterialLoader

1

1..n

1

1..n

delivers

n1..n n1..n

loads

Figure 5. Class diagram of conventional model for conveyor belt

34

EBT BO IO

WasteRemoval
Opening

Waste

1..n

1

1..n

1

extract

Mineral Processing
Facility

WasteDump

OreExtraction
Opening

Ore

1..n

1

1..n

1

extract

Concurrency
Availability
WorkLoad

WorkLoadAnalysis()
CheckAvailability()

Eff iciency
Cost
Benefit

Cost_Benefit_Analysis()

Transportation
TransportMethod
RouteConstraint
MaterialAttributes

MethodSelection()

1

1

1

1

provide information

DumpTruck

1

1..n

1

1..n
delivers

1

1..n

1

1..n

delivers

Crusher

Material
Volume
Size
Quality

Schedule
TimeFrame

AssignResouces()
TrackWorkFlow()

n

1

n

1
use

n

1

n

1

Evaluate

Shovel

1

1..n

1

1..n

works on

Transport
Capacity
Capability
Reliability

CoordinateOperations()

n

1

n

1

schedules

n1 n1 selects

n

n

n

n

move

Feeder

1

1

1

1
feeds

Origin
Place
Accessibility1 n1 n

allocate resource

1..n

1..n

1..n

1..n

connects

1

1..n

1

1..n

works on

Loader

1
1..n

1
1..ndelivers

1

1

1

1

loads

Conveyor
1

1
1

1feeds

Destination
Place
Accessibility

1

n

1

n

allocate resource

1..n

1..n

1..n

1..nconnects
1

1

delivers

1

1

Figure 6. Class diagram of stability model for conveyor belt

35

Figure 8. Class diagram of traditional model for pipeline transportation

Ore_Extraction_
OpeningOre

1..nn 1..nn

extract

Waste_Remov
al_OpeningWaste

1..nn 1..nn

extract

Mineral_Proces
sing_Facility

Material

Pipel ine

1 11 1

delivers

Loader
n1..n n1..n

loads

Pump

1

1

1

1

pumps

Feeder
1

1..n

1

1..n
delivers

Mixer
11 11

feeds

Crusher11 11

feeds

Ballmill

11 11

feeds

Waste_D
ump

Conveyor

1

1

1

1

feeds

11 11

f eeds

1

1

1

1

delivers

Loder

Feeder

Crusher Ballmill

Conveyor

Mixer
Pump

Pipeline

Figure 7. Transport materials through pipeline [5]

36

EBT BO IO

WasteRemoval
Opening

Waste

1..n

1

1..n

1

extract

Mineral Processing
Facility

WasteDump

OreExtraction
Opening

Ore

1..n

1

1..n

1

extract

Concurrency
Availability
WorkLoad

WorkLoadAnalysis()
CheckAvailability()

Eff iciency
Cost
Benefit

Cost_Benefit_Analysis()

Transportation
TransportMethod
RouteConstraint
MaterialAttributes

MethodSelection()

1

1

1

1

provide information

DumpTruck

1

1..n

1

1..n
delivers

1

1..n

1

1..n

delivers

Crusher

Mixer

Pump
1

1

1

1
feeds

Conveyor 1 11 1feeds

Ballmill
1 11 1feeds

1

1

1

1
feeds

Pipeline
1 11 1pumps

Destination
Place
Accessibility

1

1

1

1

delivers

Material
Volume
Size
Quality

Schedule
TimeFrame

AssignResouces()
TrackWorkFlow()

n

1

n

1
use

n

1

n

1

Evaluate

1

n

1

n

allocate resource

Shovel

1

1..n

1

1..n

works on

Transport
Capacity
Capability
Reliability

CoordinateOperations()

n

1

n

1

schedules

n1 n1 selects

n

n

n

n

move

1..n

1..n

1..n

1..nconnects

Feeder

1

1

1

1
feeds

Origin
Place
Accessibility1 n1 n

allocate resource

1..n

1..n

1..n

1..n

connects

1

1..n

1

1..n

works on

Loader

1
1..n

1
1..ndelivers

1

1

1

1

loads

 Figure 9. Class diagram of stability model for pipeline requirement

37

Pipeline

Oil Well

Pressure Control Installations

Pump

Tank

Figure 10. Oil transport system

Oil Well

Oil

n

1

n

1

extract

Gas

n

1

n

1

extract

Pressure
Control

n

1

n

1
separates

1

n

1

n
separates

Pump

1..n1 1..n1

feed
Pipeline

11 11

pumps

Tank
1..n

1
delivers

1..n

1

Figure 11. Traditional model for oil transport system

38

EBT BO IO

WasteRemoval
Opening

Waste

1..n

1

1..n

1

extract

OreExtraction
Opening

Mineral Processing
Facility

WasteDump

Concurrency
Availability
WorkLoad

WorkLoadAnalysis()
CheckAvailability()

Efficiency
Cost
Benefit

Cost_Benefit_Analysis()

Transportation
TransportMethod
RouteConstraint
MaterialAttributes

MethodSelection()

1

1

1

1

provide information

DumpTruck

1

1..n

1

1..n

delivers

1

1..n

1

1..n

delivers

Material
Volume
Size
Quality

Mixer

Conveyor

Ballmill
1

1
1

1
feeds 1

1

1

1

feeds

Pipeline

Destination
Place
Accessibility

1

1

1

1

delivers

Crusher1 11 1feeds

Schedule
TimeFrame

AssignResouces()
TrackWorkFlow()

n

1

n

1
use

n

1

n

1

Evaluate

1

n

1

n

allocate resource

Shovel

1

1..n

1

1..n

works on

Feeder

1

1

1

1

feeds

Origin
Place
Accessibility1 n1 n

allocate resource

1

1..n

1

1..n

works on

Loader
1 1..n1 1..ndelivers

1

1

1

1

loads

Tank

Transport
Capacity
Capability
Reliability

CoordinateOperations()

n

1

n

1

schedules

n1 n1 selects

n

n

n

n

move

1..n

1..n

1..n

1..n
connects

1..n

1..n

1..n

1..n

connects

Ore

1..n

1

1..n

1

extract

Oil

OilWell

1..n

1

Gas

1..n

1

extract

1..n

1

extract

1..n

1

Pressure
Control

Pump
1

1

1

1
feeds

1 11 1pumps

1..n

1

feeds
1..n

1

Figure 12. Class diagram of stability model for transport system

39

3. Conclusion

From this case study, we can see that conventional object-
oriented modeling is subject to instability. Each change
can prompt a re-engineering process. In contrast, the
Stability Model remains well organized over the course of
many design iterations. Ultimately, we believe this
approach has tremendous cost benefits for software teams.
The SSM is shown to be elegant and extensible and
exhibits great stability through changes. It is through
changes to the peripheral, industrial objects that we
achieve balance between the need for changes and our
goal of stability. Despite the various modifications to
support various instances of the problem, our EBTs and
BOs remain stable.
 Conventional models are all built strictly of Industrial
Objects. All of those models try to describe the problems
and solutions by decomposing them into concrete objects
and providing a mechanism to guide the subsequent
programming process. Abstract classes are used only for
reducing duplications. However, the abstract classes in
the stability model, EBTs and BOs, are designed to
describe the core purpose of the software product. The
key to the stability modeling process is to ” identify
aspects of the environment in which the software will
operate that will not change, and to cater the software to
these areas„[3]. This concept exemplifies the essence of
reuse. In conventional models, engineers often conclude
their analysis when they have identified a solution to the
problem. The stability model always tries to explicitly
expose the core of the problem domain through EBTs and
BOs. Consequently, resulting models will undoubtedly be
more stable and reusable than conventional object-
oriented models.
 Conventional models are difficult to extend, compared
to SSM. The re-engineering process involved in reusing a
conventional model frequently involves more work than
creating an entirely new model. We believe that the
stability approach holds a promise to reduce or eliminate
the costliness of the re-engineering cycles that have
become commonplace in software engineering circles.
”Object technology is all about managing complexity and
being receptive to change„[4]. The software stability
approach can be viewed as an essential refinement to
existing object-oriented analysis and design processes. It
provides a suitable approach to achieve model-based
reuse. Our case study suggests that Software Stability
Models are inherently adaptable and reusable.

4. References

[1] Tracz, W.ed., Software Reuse: Emerging Technology, IEEE
Press, New York, 1988.
[2] Fayad, Mohamed and Altman, A. An Introduction to
Software Stability. Communications of the ACM, Vol. 44, No. 9,
September 2001.

[3] Fayad, Mohamed. Accomplishing Software Stability.
Communications of the ACM, Vol. 45. No. 1, January 2002.
[4] Cary, James, Brent Carlson and Tim Graser. SanFranciso
design patterns: blueprints for business software. Addison
Wesley Longman, Inc. March 2000.
[5] Fayad, Mohamed, Shasha Wu, and Majid Nabavi. Merging
Multiple Traditional Models in one Stable Model.
Communications of the ACM, Vol. 45, No. 6, June 2002.

40

41

Model-based Software Reuse Using Stable Analysis Patterns

Haitham Hamza, Mohamed E. Fayad
Computer Science and Engineering Dept.

University of Nebraska-Lincoln
Lincoln, NE 68588, USA

{hhamza,fayad}@cse.unl.edu

Abstract

 The challenge of building efficient reusable software
artifacts is the focus of several schools of thought in
software engineering. Software analysis patterns are
recurring and reusable models. However, there are
several deficiencies with analysis patterns. These
deficiencies make it difficult to use analysis patterns as
efficient reusable artifacts. This paper proposes eight
essential properties to evaluate pattern reusability. In
addition, the concept of Stability Analysis Patterns is
introduced. This paper contrasts stable analysis patterns
with some analysis patterns using the proposed
properties.

1. Introduction

Since the inception of object-oriented concepts
researchers and practitioners alike have held fast to the
belief that reuse vastly improves the quality of software
products, while simultaneously reducing cost and
condensing lifecycles. Many reuse software communities
have evolved in recent years, including Aspect-Oriented
Programming (AOP), Component-Based Software
Engineering community, and many others.
 Analysis patterns are conceptual models that model the
knowledge domain of the problem. Analysis patterns, as
reusable artifacts have been widely heralded by the
software engineering community as a major advance over
conventional reuse techniques, and rightly so. However,
analysis patterns have not realized their full potential.
Analysis patterns are insufficiently mature to be
considered as a base for building reusable software
models. Understanding the cause of this immaturity is the
first step in achieving real reuse of analysis patterns.
 As models, analysis patterns must satisfy the six basic
model properties introduced in [5]. That is, to be simple,
complete and most probably accurate, testable, stable, to
have visual representation, and to be easily understood. In
addition to these six properties, reusable artifacts must

satisfy two additional metrics: first to be general, and
second to be easily and actually reused. Thus, a pattern
that models a specific problem should be constructed so
that it is easily reused whenever the problem occurs, and
independent of the context in which the problem appears.
 Software stability concepts introduced in [1] have
demonstrated great promise in the area of software reuse
and lifecycle improvement. Software stability models
apply the concepts of ” Enduring Business Themes„
(EBTs) and ” Business Objects„ (BOs). These concepts
have been shown to produce models that are both stable
over time, and stable across various paradigm shifts
within a domain or application context. By applying
stability model concepts to the notion of analysis patterns
we propose the concept of Stable Analysis Patterns. The
idea behind the stable analysis patterns is to analyze the
problem under consideration in terms of its EBTs and
BOs with the goal of increased stability and broader
reuse.
 In the remainder of this paper we will introduce the
eight essential properties of analysis patterns (Section 2),
and discuss the different groups approaches for building
analysis patterns (Section 3). We will study some
example patterns reflecting each of the aforementioned
groups (Section 4), and compare these approaches
(Section 5). Conclusions are presented in Section 6.

2. Essential Properties of Analysis Patterns

In this section we examine the eight properties of efficient
reusable models. Satisfying these eight properties does
not guarantee an efficient reusable model; however, in
practice, lacking any of these properties will affect the
reusability of the model. These eight essential properties
are:

1. Simple: a pattern is not intended to represent a model
for a complete system; rather it models a specific problem
that commonly appears within larger systems. Systems,
by their nature, combine many problems. Thus, they are
modeled using a collection of analysis patterns. In fact,

42

each analysis pattern should focus on one specific
problem; otherwise, many problems arise. Without
decomposing a system into components, models become
unreasonably complex, the generality of the patterns are
adversely affected, and the model becomes highly non-
intuitive. If a pattern is used to model an overly broad
portion of a system, the generality of resulting patterns is
sacrificed ’ the maxim holds: the probability of the
occurrence of all the problems together is less than the
probability of the occurrence of each problem
individually. For example, modeling the ” payment„
problem with ” buying a car„ is not effective since the
” payment„ problem may appear in unlimited number of
problems. Pattern completeness is also sacrificed when
we model a system at an improper level of resolution,
because the analyst�s focus is not on a specific problem,
and it is likely that important feature of the system and its
subcomponents will be overlooked.
2. Complete and most likely accurate: closely related to
the concept of simplicity, this property guarantees that all
the required information is present. In order to be
considered complete the model should not omit any
component. The model must be able to express the
essential concepts of its properties. For example, trying to
model the whole rental system of any property will force
us to miss some of the parts of this system. Renting a car
will involve something related to its insurance; however,
renting a book from a library has nothing to do with the
insurance problem. As a result, pattern that models the
rental system, besides lacking the simplicity property, it
will not be complete or accurate.
3. Testable: for the model to be testable, it must be
specific and unambiguous. Thus, all the classes and the
relationships of the model could be qualified and
validated.
4. Stable: stability influences the reusability of a model.
Stable models are easily adapted and modified without the
risk of obsolescence.
5. Graphical or visual: conceptual models are difficult to
visualize. Therefore, having a graphical representation for
the model aids understanding it.
6. Easy to understand: Conceptual models are complex
as they represent a high level of abstraction. Therefore, it
is required for analysis patterns to be well described such
that they aid in communicating an understanding of the
system. Otherwise use of the pattern is neither attractive
nor effective.
7. General: This property is essential to ensure model
reusability. Pattern models lacking generality become
useless, since analysts will tend to build new models
rather than spending time and effort to adapt an unruly
pattern to fit into an application. Generality means that a
pattern that models a specific problem is easily used to
model the same problem independent of context. Pattern
generality may be divided into two categories: Patterns

that solve problems that frequently appear in different
contexts (domain-less patterns), and patterns that solve
problems that frequently appear within specific contexts
(domain-specific patterns). In the latter sense, the pattern
is still considered to be general even if it is only
applicable in a certain domain, but in this case, we should
make sure that the problem that this pattern models dose
not occur in other contexts.
8. Easy to use and reuse: analysis patterns should be
presented in a clear way that makes them easily reused. It
is important to remember that patterns are consumed in
larger models. Patterns that are easy to use and designed
for reuse stand a greater chance of actually being reused.

3. Classification of Analysis Pattern

One possible classification for analysis patterns is based
on the construction approach. Generally, different
building approaches categorize analysis patterns into three
groups:

Group I: People in this group use their experience to build
analysis patterns. Simply, patterns are produced during
the course of specific projects. Since no one can be an
expert in all fields, domain experts often produce domain
specific patterns, even if the problem modeled occurs in
many other contexts. People in this category believe that
it is unsafe to further abstract patterns generated within
certain projects in order to make them reusable in other
contexts. They argue that the patterns resulted from
extended debate and that the patterns have been tested and
validated in the project. Therefore, there is no guarantee
that these patterns will be successfully reused in other
contexts.
Group II: People in this group use analogy to build their
analysis patterns. According to this group, patterns that
model complete systems in one context are reused by
making an analogy between the pattern and the new
application. Thus, by analogy, they change the names of
the pattern�s classes to be relevant to the new application.
It is also possible to remove or add few classes to the
pattern�s model. Even though this group believes that
analysis patterns should be built in a way the makes them
reused to model the same problem regardless of its
context. However, the way they choose to approach this
goal makes them end up building templates rather than
building patterns.
Group III, which is our group, our approach is based on
the software stability concepts [2]. By analyzing the
problem in terms of its EBTs and the BOs, the resultant
pattern models the core knowledge of the problem. The
goal of this approach is stability. As a result, these stable
patterns could be used to model the same problem
regardless its context.

43

4. Evaluation of Analysis Patterns Groups

 In order to fairly compare the effectiveness of the
patterns generated by the three different groups described
in the previous section, a pattern that reflects the approach
of each group will be examined against the essential
properties mentioned earlier in section 2.

4.1 Group I

The Account Pattern provided by Fowler [5] is
representative of this group. Figure 1 shows the class
diagram of the Account Pattern. The purpose of this
pattern is to provide a model for the ” account„ problem;
thus, we can use this pattern to model banking account for
instance. In fact, it was not long time ago when word
account has been merely used to indicate banking and
financial accounts. Today, the word account alone
becomes a vague concept if it is not allied with a word
related to a certain context. For instance, besides all the
traditional well-known business and banking accounts,
today we have e-mail accounts, on-line shopping
accounts, on-line learning accounts, subscription account,
and many others. As a result, using words such as balance
and withdrawal while modeling the account, makes the
use of the pattern to model accounts in different contexts,
time and effort-consuming, if not, impossible. For
instance, suppose we want to model an e-mail account
using Martin�s pattern, perhaps the most obvious changes
are all the classes� behaviors, which are completely
irrelevant to the email application.
 From the simplicity point of view, Fowler�s Account
Pattern is not considered simple in the sense that it
models two different problems at the same time. The first
problem is the ” account„ problem and the second problem
is the ” entry„ problem. In fact, these are two independent
problems. Even though they used to appear together in
many contexts; however, there is a possibility of having
entries without an account, or having an account without
entries. As a result, the generality of the pattern is
limited. These factors contribute negatively to the
reusability of the pattern.
 Fowler�s pattern is not complete in the sense that it
lacks some of the ” basic„ concepts that appear frequently
in banking accounts. For instance, suppose that we need
to use this pattern to model a banking account. In banking
accounts it is possible that two or more persons may be
holders of the same account. Perhaps, there is a primary
holder that has the full authorization to manage and
control the account, while each of the other holders will
have specific privileges for using the same account. Such
situation cannot be handled while using Martin�s account.
Thus, Martin�s pattern is not applicable to some of the
usual financial and banking account situations. Since

significant effort is required to adapt this pattern to other
circumstances, the stability of the system is limited and
the pattern structure is not stable over time.
 This pattern is graphical in the sense that it has a
graphical model that describes it (the class diagram).
Having such a graphical representation will make the
pattern visually testable.

Figure 1. Martin�s Account pattern [5]

4.2 Group II

Figure 2 provides the class diagram of the Resource
Rental Pattern [6]. The objective of the pattern is to
provide a model that could be reused to model the
problem of renting any resource. Figure 3 provides an
example of the Resource Rental Pattern applied in the
context of a library service [6]. Many examples for
applying this pattern to different applications are
suggested in [6].
 This pattern models a complete resource rental system;
thus, it models a collection of problems, whereas each of
these problems could be modeled individually. For
example, the ” payment„ process is a stand-alone problem,
which could appear in many other contexts. Therefore,
having a pattern that models the ” payment„ problem alone
will be more effective since such pattern will be reused in
many other applications.
 The resource rental pattern lacks the simplicity. In
addition, it is not general, because it is not applicable to
any resource rental. One of the most basic steps in the
automobile rental process is the question of insurance.
There is nothing in this model that can be used to address
insurance programs.
 Another issue that is not addressed in this pattern, yet it
is essential in many renting systems, is the verification
process. In many cases, renting a resource might require a
membership (as in the case of the universities library) or
other identification (such as the driver license in the case
of renting a car). There is a link between the completeness
of the model and its stability. Reuse is challenging when
applying incomplete patterns because many new classes
are needed to complete the model.
 In our example, suppose we need to model a car rental
system using this pattern. Now we have reached the
conclusion that we need to add the verification process
classes and the insurance process classes. Substantial
analysis is needed to complete this new model, hence the

Entry

Account

balance()
withdrawel()
deposits()

 1 *

44

Figure 2. Resource rental pattern [6].

TypeOfBook
code
description

set()
get()

Fine
paymentDate
value

finesDone()

Reader
code
name

set()
get()
getBookingsByReader()
getRentalsByReader()

Book
ISBN
title
qtyOfInstancesAvailable
author

set()
get()
listByType()
getReservationsByBook()

BookReservation
reservationDate
observations

reserve()
cancelReservation()

BookCopy
number
rackPosition
status

set()
get()
getLendingByCopy()

BookLending
lendingDate
returningDate
observations

rentBook()
ReturnBook()

* *

*

1

1.. *

* 0..1

*

*

1 *0..1 0..1

1

1
1..*

*

*

Figure 3. Instantiation of resource rental pattern for a library service [6][6].

TypeOfResource
code
description

set()
get()

Payment
dueDate
paymentDate
installmentNumber
value
situation

comingInstallments()
overduePayments()
paymentsDone()

ResourceBooking
bookingDate
period
bookingFee
observations

book()
cancelBooking()

Customer
code
name

Set()
get()
getBookingsByCustomer()
getRentalsByCustomer()

Resource
code
description
qtyOfInstancesAvailable

set()
get()
listByType()
getBookingsByResource()

ResourceRental
bookingDate
expiringDate
rentalRate
observations

rentResource()
checkOutResorce()
calculateEarnings()

ResourceInstance
number
location
status

set()
get()
getRentalsByInst.()

1

*

1

*

*
1

1..*

* 0..1

*

*

1 *0..1 0..1

1
1

1..*

*

*

45

analyst may be inclined to build a new model from
scratch. Therefore, the pattern will not be reused.
As in the first group, the existence of a class diagram to
represent the model makes the model graphical. As a
result the pattern is readily tested.

4.3 Group III

This group reflects our proposed solution for building
reusable analysis models and avoiding most of the
common problems we found in the other groups. In order
to make the evaluation of this group patterns more
interesting, the pattern example that is chosen is the
stability version of the Account pattern introduced by
Fowler.
 From the stability point of view, the model that focuses
on the account problem has nothing to do with the entry
problem. Thus, it is required to have different patterns for
each individual problem. In this manner, the simplicity of
our models is guaranteed since each pattern will focus on
a specific problem.
 Stability goes further by providing other classes that do
not exist in Fowler�s model. Figure 4 shows the proposed
analysis pattern ” AnyAccount„ that provides the stable
model for the ” account„ problem. The new classes that
appear in the stability model help us to handle those
circumstances that Fowler�s model fails to cover; thus, the
model becomes accurate and complete. For instance, the
use of the EBT of ” Ownership„ and the BO of ” Holder„
in the modeling of the account aids in contexts where
there is a difference between the account owner, and those
who are authorized to use the account under certain rules,
should made clear.
 ” Ownership„ is an enduring concept, which will never
change independent of context. On the other hand, the
” Holder„ here is externally stable and never change with
time, although the holders of the account could internally
change (holder may get ill, for example); however, they
are still the holder of the account. As we can see in the
pattern class diagram, the inherited objects from the
” Holder„ object model the different roles of the different
levels of the usability of that account. This pattern�s
structure is stable over the time and general enough to
handle different applications that involve accounts and the
different situations within the same application as well.
 On the other hand, thinking about ” entry„ as a stand-
alone problem forces us to build a pattern that models any
entry regardless of context. Using the stability concepts
we were able to come up with a stable pattern the models
any entry for any application. This pattern is called
” AnyEntry„ pattern and its class diagram is given in
Figure 5.
 By combining the pattern that models the account
problem (the ” AnyAccount„ pattern) with that which
models the entry problem (the ” AnyEntry„ pattern) we can

demonstrate the ease of reusing stability models to
construct comprehensive models. Figure 6 shows the class
diagram for this third pattern. The ” AccountWithEntry„
pattern could be used to model any account that has
entries associated with it, as in the case of banking
accounts and email accounts for example.
5. Comparison of Analysis Patterns Groups

Based on the essential properties discussed in section 2,
table 1 summarizes the results of the three analysis pattern
groups.

6. Conclusion
Analysis patterns could form a foundation for building
reusable software assets. However, this evaluation of
some analysis patterns show that these patterns lack many
essential properties. As a result, their reusability is
diminished. Software stability has been proposed as a
solution for the deficiencies encountered in analysis
patterns. Stable analysis patterns demonstrate
effectiveness by satisfying all the proposed properties.
Therefore, the application of stable analysis patterns is a
promising approach meriting further research among the
reuse communities.

7. References

[1] M. E. Fayad, A. Altman, ” Introduction to Software
Stability„ , Communications of the ACM, Vol. 44, No. 9,
September 2001.

[2] M. E. Fayad, ” Accomplishing Software Stability’ ,,
Communications of the ACM, Vol. 45, No. 1, January 2002.

[3] M. E. Fayad, ” How to Deal with Software Stability’ ,
Communications of the ACM, Vol. 45, No. 4, April 2002.

[4] M. E. Fayad and M. Laitinen, ” Transition to Object-
Oriented Software Developments„ , New York: Wiley & Sons,
August 1998.

[5] M. Fowler, ” Analysis Patterns: Reusable Object Models„ ,
Addison-Wesley, 1997.

[6] R. T. Vaccare Braga et. al., ” A Confederation of Patterns for
Business resource Management„ Proceedings of Pattern
Language of Programs! 98 (PLOP!98), 1998.

46

Figure 5. AnyEntry pattern class diagram [6].

Figure 4. AnyAccount pattern class diagram [6]

Recording {EBT}
description

UserDefinedTe
mplate {BO}

AnyEntry {BO}
type
restrections

add()
delete()
update()

record
record

0..* layout0..* 1..*
record template

Role_1 Role_2 Role_n

O wn ers hi p {E B T}
res pons abilit ies
nam e

m antain()
ac c es s ()
c hnage()
update()
opnam e2()

A ny A cc oun
t {B O }
objec t ive

c reat()
c anc el()

 Holder
 {B O }

c ontac t_info
holder_nam e

us e()

owned has1..* 0..*

re cord

record

0..*

la yout

0..*

1..*

re cord

tem plate

Role_1 Role_2 Role_n

owned

has
1..* 0..*

Ownership {E B T}
responsabilit ies
nam e

m antain()
access()
chnage()
update()
opnam e2()

 Holder {B O}
contac t_info
holder_nam e

use()

Recording {E B T}
desc ript ion

UserDefinedTe
m plate {B O}

A nyEntry {B O}
type
res trec tions

add()
delete()
update()

A nyAccount {B O}
o bjec ti ve

c reat ()
c ancel ()

has
hold record
1..* 0..*

Figure 6. AccountWithEntry pattern [6].

47

 Evaluation
Properties

Group I Group II Our Group

Simple No. It models two different
problems.

No. It models an entire
system.

Yes. Each model focuses on one
problem.

Complete
and most
likely
accurate

No. It does not cover all
the circumstances that
might occur in the
application.

No. It is not sufficiently
general to address the
requirements of different
renting applications.

Yes. Because each model focuses
on a specific problem, all
situations within the problem can
be easily covered.

Stable

No. This pattern cannot
model all types of today�s
accounts. Thus, we will
always need to do major
changes to reuse this
pattern for different
applications.

No. Using this pattern to
model different application
will need major changes.
For instance, adding the
verification process to the
model will need a lot of
changes.

Yes. The patterns in this group
are built with stability in mind.
The use of EBTs and BOs, ensure
stability in the model.

Testable

Yes. Since the pattern can
be visualized; thus, we can,
at least, visually test it.

Yes. Since the pattern can
be visualized; thus, we can,
at least, visually test it.

Yes. Since the pattern can be
visualized; thus, we can, at least,
visually test it.

Easy to
understand

Yes. Generally speaking,
despite the accuracy of the
pattern, it is easy to
understand its structure.

Yes. Despite the accuracy
of the pattern, it is easy to
understand its structure.

Yes. Since the used EBTs and the
BOs reflect the concepts that we
are familiars with; it is easy to
understand the model structure.

Graphical
or visual

Yes. The pattern has a
graphical presentation,
which is the class diagram.

Yes. The pattern has a
graphical presentation,
which is the class diagram.

Yes. The pattern has a graphical
presentation, which is the class
diagram.

General

No. We cannot use it to
model the account in other
contexts other than
monetary application.
Also, it dose not cover the
cases of having accounts
without entries and vise
versa. Moreover, the
pattern dose not cover
some of the situations such
as having more than one
holder for the same
account.

No. This pattern cannot be
used to model the rental of
some resources. For
instance car rental, since
there is nothing in the
model that cover the
insurance issues, which is
an essential part of any cat
rental process.

Yes. Because of the stability
concept, our models focus in a
specific problem trying to flush
the core knowledge underneath
the surface of the problem. Since
the core knowledge of any
problem is constant regardless the
context that this problem might
appear in, the model of the
problem is general and can apply
to the problem whenever it occur.

Easy to use
and reuse

No. Using the patterns of
this group in different
application that they
originally built for, if it
possible is not an easy task.

No. As we mentioned
before, we will need to do
major changes to use this
pattern in different
application such as for car
renting.

Yes. Using the pattern by itself or
the integration of few patterns are
both easy to be done. This
property is demonstrated by
introducing the third pattern
shown in figure 6.

Table 1. Comparison of analysis patterns groups [6].

48

49

Modelling Component Libraries for Reuse and Evolution

Miro Casanova and Ragnhild Van Der Straeten
System and Software Engineering Lab, Vrije Universiteit Brussel

Pleinlaan 2
Brussels, Belgium

Email: fmcasanovjrvdstraeg@vub.ac.be

Abstract

If we want to compose components which were
used to build a certain software application, with
other components to develop a new application,
we lack the necessary knowledge to reuse these
components. The research on software libraries
has improved reuse. Our goal is to classify
software components in libraries using a multi-
dimensional approach supporting reuse as well
as evolution. For this purpose, ontologies will
be used capturing the structure of software com-
ponent libraries, Description Logic will be used
to build these ontologies and the component and
composition patterns approach [VW01] [WV01]
will be used to support reuse. This will provide the
developer with an extended support to develop an
application using components and with support
to manage and maintain the software component
libraries.

1 Introduction

Component-based software development
(CBSD) is one of the major efforts for improving
reusability and maintainability of software appli-
cations. A component was defined at ECOOP
96 [SP97] as follows: A software component is a
unit of composition with contractually specified
interfaces and explicit context dependencies only.

A software component can be deployed inde-
pendently and is subject to composition by third
parties. The great advantage of component-based
software development is that new software can
be built by combining bought and self-made
components. To do this, it is necessary to specify
in which contexts the component can be used
and how it will behave. This specification should
enable the user of a component to determine
whether it can be used in a particular case.

In [BJ99] a component specification consists of
four levels, namely the syntactic or API level, the
behavioural or semantic level, the synchroniza-
tion level and the quality of service level. In rela-
tion to the previous, in our lab a component com-
position environment PacoSuite [VW01] [WV01]
has been developed which supports the develop-
ment of applications through the visual composi-
tion of software components. The components are
documented with usage scenarios and component
composition patterns. Both kinds of documen-
tation make use of an extension of Message Se-
quence Charts (MSC). These diagrams describe
typical role interactions of the components in a
similar way as the interaction of objects is ex-
pressed in a UML interaction diagram. Compo-
nent composition patterns are high level descrip-
tions of cooperations between several roles with-
out any indication on how this cooperation will
be implemented. The same diagrams are used to

50

model typical interactions of a component with
its environment, i.e. usage scenario’s. Based
on that documentation automated compatibility
checks are performed using finite automata. That
research focuses on the synchronization level.

On the other hand, an important effort for im-
proving reusability of software is the research
done on software libraries. A software library
is defined as a ”managed collection of software
assets where assets can be stored, retrieved and
browsed” [AM]. An important improvement in
software libraries is the use of the faceted classifi-
cation approach. A facet is a ”clearly defined, mu-
tually exclusive, and collectively exhaustive as-
pects, properties or characteristics of a class or
specific subject” [T92]. Each facet consists of
several terms which describe the concrete values
the facet can have.

In this paper we will bring together the afore-
mentioned research on CBSD and the research
on software libraries. We want to classify com-
ponents (in the sense of CBSD) in software li-
braries by using the faceted approach. We will
mainly focus on the semantic level by using on-
tologies. These ontologies will represent a multi-
dimensional classification of components and will
capture the behaviour of components. We envi-
sion this research as a way of improving reuse and
evolution of component-based applications.

In section 2 the approach we follow will be ex-
plained. In section 3 we focus on the functionality
and reuse dimension which are part of the ontol-
ogy for generic components that we have devel-
oped. In section 4 we show how some compo-
nents of a small application are classified using
the presented approach. Finally, in section 5 we
conclude and give some future work.

2 Our approach

We observe that software libraries using a
faceted approach have some limitations:

� The description of the behaviour of the soft-
ware artifacts, that are to be stored in the

libraries, is possible if and only if they are
fine-grained. However, we can have multi-
behaviour components offering several ser-
vices.

� Another complication appears whenever we
try to classify components having state. In
this case, the behaviour of a component
can depend on the state the component has,
which gives multiple ways of classifying the
same component.

� If two software libraries of related domains
are to be merged, currently, the only way of
doing it is to manually add components one
by one from one library to the other. This
implies that the user must give the specifica-
tions for every component, which is a long
and error-prone process. The best case is
when in both libraries the same terminology
is used, i.e. the same facets and terms are
used. Otherwise, the user must also interpret
each of those facets and terms and map them
into concepts of the other library.

It is our intention to classify components in
software libraries by using the faceted approach
[PD91] [PF87]. This allows to have a multi-
dimensional classification of components. We de-
fine a dimension as a set of facets that are related
to the same view or the same aspect of a com-
ponent. Different dimensions should be consid-
ered in the classification. For instance the func-
tionality (what it does, inputs, outputs, etc.) of
a component, the knowledge of its past uses (in
which systems it has been used, with which com-
ponents it has collaborated, with which composi-
tion patterns it has been used, etc.), the implemen-
tation issues (programming language, platform,
etc.) and so on.

Furthermore, next to the different dimen-
sions, also the relations among those dimensions
(i.e. interdimensional relations) and the relations
within one dimension (i.e. intradimensional re-
lations) should be considered. As an example of

51

an interdimensional relation consider a network
component sending packages to another compo-
nent. Depending on the platform the performance
of the component could be different. As an ex-
ample of an intradimensional relation consider
a component whose platform must have another
value depending on the programming language
(e.g. in Java, components should work on any
platform). Our goal is to improve reuse and evo-
lution in the development process of component-
based systems. However, in this paper we will
focus mainly on the reuse aspect.

2.1 Application-Specific Ontologies

To overcome the difficulties encountered in
software libraries, we will describe the different
facets of a component and their possible values to-
gether with the relations that exist between them
in the same or another dimension. In other words,
we want to create a layer that defines the struc-
ture of the component library. Ontologies describ-
ing the structure of the multi-dimensional clas-
sification of components will be constructed us-
ing an ontology language based on a Descrip-
tion Logic (DL). These ontologies will define
the facets, terms, dimensions, inter- and intra-
dimensional relations, etc. of the different com-
ponents. The way this ontologies are defined de-
pend largely upon the kind of application that can
be constructed with these components. When us-
ing a component, the developer acquires knowl-
edge about its use. When building new applica-
tions with that component the developer wants to
be able to apply this knowledge. Component li-
braries are built based on such ontologies. The
advantages of having such ontologies are:

� The insertion of the components in the li-
brary becomes easier because of the explicit
presence of the relations. Given a term of a
facet, other terms can be automatically de-
rived due to those relationships.

� Different libraries based on the same ontol-
ogy can be easily merged.

� Different libraries based on different ontolo-
gies can also be merged. In this case, first the
ontologies should be merged. Some research
is already done in this area [NM99], however
it is still very preliminary. After merging the
ontologies, the libraries can be merged based
on the new ontology.

� Using the ontology, smart queries can be ex-
ecuted on the different software libraries.

2.2 Description Logic

The family of Description Logics originate
from knowledge representation research in Ar-
tificial Intelligence. Their main strength comes
from the different reasoning mechanisms they of-
fer. The complexity of reasoning in these different
languages is and has been widely investigated.

The basic elements of a Description Logic are
concepts and roles. A concept denotes a set of
individuals, a role denotes a binary relation be-
tween individuals. Arbitrary concepts and roles
are formed starting from a set of atomic concepts
and atomic roles applying concept and role con-
structors.

An ontology language will be developed based
on the Description Logic Q � SHIQ [CL02].
The advantages of using Description Logic to
build these ontologies are:

� Concepts can be easily composed to form
new concepts.

� DL allows for arbitrary binary relations
which enables the expression of the differ-
ent relations between the components, their
terms, facets and the dimensions.

� DL offers efficient reasoning support. This
support can be used to reason about and to
query the constructed ontology.

We will use the OIL ontology language [FH00]
for the examples shown in this paper. This is a

52

language for specifying and exchanging ontolo-
gies. It is based on the DL SHIQ [HS01], on
frame-based systems and on the web standards
XML and RDF.

3 Functionality & Reuse Dimension

An ontology defining the structure of a soft-
ware library for generic components has been de-
fined. For space restrictions, we focus only on
the two most relevant dimensions for reuse: the
functionality and the reuse dimensions. As we
have said, a dimension is composed by a set of
related facets. A facet in our case can have more
than one term associated. The reason for this is
mainly that components are intrinsically reusable
entities, and in consequence, they can be used in
different contexts for different purposes. There-
fore they can have several functionalities, differ-
ent contexts where they can be used, different pro-
vided interfaces, and so on. Thus in order to spec-
ify this multi-context behaviour using the faceted
approach, it is necessary that facets have the pos-
sibility of being linked to many terms. The spec-
ification of these dimensions has been figured out
by inspecting and analyzing component-based ap-
plications and their components. We have to men-
tion that this specification is still evolving.

Two kinds of facets are present: the ones that
are useful for classifying components, and the
ones that are not useful for classifying but for
documenting. An example of the first kind is the
facets that belong to the Functionality dimension,
and of the second kind the facet Protocol of the
Reuse dimension. Although the second kind is
not useful for classifying, it is indeed useful for
reusing components in systems that are being cre-
ated, maintained or in systems that evolve.

3.1 Functionality

Every facet that has to do with the functionality
part of the component belongs to this dimension.
The components in this dimension are to be clas-

sified by their behaviour. This behaviour can be
multiple due to the fact that a component can per-
form several actions. Some facets of this dimen-
sion are:

1. Actions: the different functions the compo-
nent can perform. Some terms of this facet
are:

� Add : append, prepend, insert

� Remove : delete last, delete first, delete
any

� Link

– Out : reference, subscribe, unsub-
scribe, connect, disconnect

– In : referenced, subscribed, unsub-
scribed, connected, disconnected

� Display

� Data : send, receive, set, get, notify,
stream, answer

� Calculation : sort, search, per-
form specific,...

2. Inputs: arguments needed to perform some
action.

� String

� Number: integer, float, ...

� None

� ...

3. Outputs: results of the performed action.

� String

� Number: integer, float, ...

� None

� ...

4. Medium: entities that are locales where the
action is performed.

� Dictionary

53

� Stack

� List

� ...

5. Kind: Information about the kind or type of
the component.

� Gui: button,console,...

� Data Structure: stack, list, tree, ...

� Algorithm: sorting, searching,...

� Network: client, server,...

� ...

A hierarchy of terms has been created which
structures all the possible values that a facet can
have. The hierarchy presented above has been
thought for classifying general purpose compo-
nents. For classifying components that are spe-
cific of a given domain, other facets and terms
(described in another ontology) should be used.
There are also some relations between the terms
of this dimension, but they will be described in
3.3.

3.2 Reuse

In this dimension the information that is use-
ful at the moment of reusing the component in
a given application is stored. The knowledge of
past experiences (past uses) of the component is
stored. The following are the 4 facets of this di-
mension:

1. Environments: Names of composition pat-
terns in which the component has been pre-
viously used.

2. Protocol: MSC describing its protocol.

3. Related components: components that have
been frequently used together with the com-
ponent to be reused.

4. Related Systems: systems in which the com-
ponent has been previously used.

Notice that only the third and fourth facets are
useful for classifying. Indeed, the components
can be grouped together following the values of
those facets. On the other hand, the first and
second facets are just for documenting. In other
words, it is not possible to classify components by
their corresponding MSCs because they are just
drawings describing the manners that the compo-
nents can be used.

3.3 Relations

Some relations have been found while defining
the dimensions. Some of them are intradimen-
sional and some interdimensional. For instance,
there is an implicit relation between two terms of
the functionality dimension, namely Gui and Dis-
play. Indeed, if the Display term is set, then there
must be set also a term Gui, or vice versa. The
relation can be described in SHIQ as follows:

Functionality v

8has kind.Gui t :8has actions.Display

The relations can be helpful for automating part of
the process of classifying a component into a soft-
ware library. The selection of a particular term in
a facet can trigger the automatic selection of other
terms in other facets either in the same dimension
or other dimensions or both. The previous process
enforces the selection of some terms by inferring
them from the specified relations, thus, preventing
the user for making useless effort.

Both inter- and intradimensional relations can
act on two levels: on the level of the ontology and
on the level of the component (that must be spec-
ified by the user). The former is part of the defi-
nition of the structure of the library and indicates
the relations of facets and terms that any compo-
nent of the domain has. The latter is the relations
that are inherent to a particular component. For
instance, a typical relation in this level is when
a given action in the functionality dimension is

54

linked to some particular inputs and outputs. The
example given above belongs to the first level. An
example of the second level of relations will be
given in the following section.

4 Example

In this section we present how some compo-
nents of a small application have been classi-
fied using the presented approach. This appli-
cation is a scrabble game which has two players
(Master and Slave) that communicate by means
of two Network components that are connected
with each other. The scrabble user interface com-
ponent contains the interface of the game to-
gether with the logic of the program, the spelling
checker receives a word and checks whether it
corresponds to a valid English word, the Network
component communicates with another Network
component, and the Java button displays a button
on the screen while it is waiting for a click to send
a signal to another component in order to perform
a given action.

The mentioned application is composed of the
following components and composition patterns
(i.e. the way the components communicate with
each other) on the Master side:

� Scrabble user interface (ScrabbleGUI)

� Network client (Network)

� Spelling checker (Dictionary)

� Game Master: composition pattern

On the Client side, it has in addition:

� Standard Java button (JButton)

� Game Slave: composition pattern

As it can be seen, there are three components
that are reused in both the client and server side:
ScrabbleGUI, Network and Dictionary. We de-
scribe only these 3 components because we focus
on reuse.

1. ScrabbleGUI

� Actions: display, perform specific,
subscribed

� Inputs: none

� Outputs: none

� Medium: none

2. Network

� Actions: connect, disconnect, receive,
send

� Inputs: none

� Outputs: none

� Medium: none

3. Dictionary

� Actions: search, answer

� Inputs: string

� Outputs: string

� Medium: dictionary

By looking at this example (in particular to the
component Dictionary), the necessity of having a
relation among the terms of Actions, Inputs, Out-
puts and Medium arises. In this case, the relation-
ship must state that the action search looks up a
string (the input) in a dictionary and returns an-
other string (the output). This is a relation at the
level of the component as mentioned in 3.3. In
figure 1 the expression of the relation is shown in
an OIL editor. It is our aim to provide the user
with a simple ontology language to enable him to
write relations down in an easy way. This implies
that the user does not have to know anything about
DL.

As this ontology is defined only for generic
components, then the action that is performed by
a very specific component such as ScrabbleGUI
is defined as ”perform specific”. If a more fine-
grained classification is needed, then another on-
tology (in this case it can be some kind of ”Game
Ontology”) can be added to the software library.

55

Figure 1. The relation written in OIL

The classification of a component looks as a
very time-consuming process. Nevertheless we
think that the previous is normal given the poten-
tial complexity of the component itself. What it is
possible to do (and that is our intention) is to pro-
vide the developer with tool support for making
both the classification of components and their
(re)use as simple as possible, using the reasoning
capabilities of DL.

5 Conclusions & Future Work

Our approach brings together several other
works on software libraries, DL, ontologies and
CBSD. One of our major goals is to support the
software developer with a component software
library for improving reuse and evolution. DL
will be used for describing ontologies contain-
ing the structure of the software library (dimen-
sions, facets, terms and relations). In this soft-
ware library multi-purpose components can be
classified, in contrast with other libraries that only
classify atomic software artifacts (such as ”input-
output functions”). However, as the components
to be classified can have several functionalities, its

classification process becomes more difficult. By
having relations, which link terms at the level of
the ontology and component, the mentioned pro-
cess can be semi-automated (thanks to the reason-
ing support offered by DL) for making it as simple
as possible.

A scheme of an ontology for general-purpose
components has been presented with an example
of an application that follows the ideas in [WV01]
and [VW01]. Also, it has been explained that
if other kinds of components (some components
that belong to a specific domain) are to be classi-
fied, a domain specific ontology, which specifies
another dimension-facet-term-relation structure,
can be used. This makes possible to have several
domain-specific software libraries depending on
the context in which the components they store
are is used. Furthermore if there are two soft-
ware libraries of domains that are very similar,
they can be merged by merging their correspond-
ing ontologies.

In the future we envision also the use of our
approach for improving evolution of component-
based applications. It is possible to classify and
group ”similar” components, i.e. components
that can be interchanged in an application (when
maintaining or evolving it) with a relatively low
effort.

Our aim is also to provide tool support. A
generic software library should be built structured
only by the general purpose ontology presented
above. Other more specific ontologies should
be defined as well for creating the mentioned
domain-specific software libraries just by plug-
ging them in.

Another work to do is the support for compo-
nents that have different functionality depending
on their state. We have defined the ontology for
generic components (a part has been presented in
this paper) but the issue of the state of the compo-
nents has not been addressed so far.

56

References

[SP97] Szyperski, C., & Pfister,
C. (1997). Workshop on
Component-Oriented Program-
ming, Summary. In MuhlHauser
M. (Ed.) Special Issues in
Object-Oriented Programming
- ECOOP96 Workshop Reader.
Dpunkt Verlag, Heidelberg.

[BJ99] Beugnard, J. Jezequel, N.
Plouzeau, D. Watkins. ”Making
Components Contracts Aware”.
IEEE Computer, July 1999.

[WV01] Wydaeghe, B and Vanderperren,
W. ”Towards a New Component
Composition Process”. Proceed-
ings of ECBS 2001, Washington,
USA, April 2001.

[VW01] Wydaeghe, B and Vandeperren,
W. ”Visual Component Com-
position Using Composition
Patterns”. Proceedings of Tools
2001, Santa Barbara, USA, July
2001

[PD91] R. Prieto-Diaz. ”Implementing
Faceted classification for soft-
ware reuse”. Communications of
the Acm. May 1991.

[PF87] R. Prieto-Diaz and Peter Free-
man. ”Classifying software for
reuse”. IEEE Software, 4(1):6-16,
January 1987.

[AM] S. Atkinson, A. Mili. ”Soft-
ware Libraries”. http://citeseer
.nj.nec.com/17413.html

[T92] Taylor A. ”Introduction to Cata-
loging and Classification”. 8th ed.
Englewood, Colorado: Libraries
Unlimited, 1992.

[NM99] N. F. Noy & M. A. Musen. An Al-
gorithm for Merging and Align-
ing Ontologies: Automation and
Tool Support. Sixteenth National
Conference on Artificial Intelli-
gence (AAAI-99), Workshop on
Ontology Management, Orlando,
FL, . 1999.

[CL02] C. Lutz. Adding Numbers to the
SHIQ Description Logic—First
Results. To appear in Proceedings
of the Eighth International Con-
ference on Principles of Knowl-
edge Representation and Reason-
ing (KR2002). Morgan Kaufman.
Toulouse, France. 2002.

[FH00] D. Fensel, I. Horrocks, F. van
Harmelen, S. Decker, M. Erd-
mann & M. Klein. OIL in a
Nutshell. Proceedings of the 12th
European Workshop on Knowl-
edge Acquisition, Modeling,
and Management (EKAW’00).
Springer-Verlag. Juan-les-Pins,
France. October 2000.

[HS01] I. Horrocks and U. Sattler. Ontol-
ogy Reasoning in the SHOQ(D)
Description Logic. Proceedings
of the Seventeenth International
Joint Conference on Artificial In-
telligence. Seattle, USA. August
2001.

57

Modeling With Components
– Towards a Unified Component Meta Model –

Uwe Rastofer
method park Software AG, Erlangen, Germany

Uwe.Rastofer@methodpark.de
and

Department of Computer Science 4 (Distributed Systems and Operating Systems),
University of Erlangen-Nuremberg, Germany

Uwe.Rastofer@informatik.uni-erlangen.de

Abstract

Despite their popularity, object-oriented technologies
have generally failed to reuse assets across multiple
projects. By contrast, components have recently become a
promising reuse technology. But current component tech-
nologies address the problems of reuse and composition at
the programming level only. What is needed is an integra-
tion of components into a modeling paradigm. First and
foremost a model that is capable of modeling the various
existing component models – a component meta model –
has to be designed.

In our work we develop a meta model that unifies the
basic features of the well-known component models. We
shown that the meta model is complete by defining it with
the help of its own features. This also makes it its own meta
model and terminates the meta-level hierarchy.

To be able to describe the features of existing component
models the minimal meta model has to be extended. For two
well-known component models we show how this is done.
We also provide mappings between the meta model and the
component models to enable the reuse of modeling informa-
tion. Finally we demonstrate how easily an extension for a
behavior model can be integrated into our modeling frame-
work.

1 Introduction

Object-oriented models, especially the Unified Modeling
Language (UML) [1], are nowadays the most popular mod-
eling paradigms. In spite of their success, object-oriented
design and programming have a number of shortcomings
that limit their applicability to large and complex systems
[2]. Methods and interfaces are used to specify the services

a class offers. But the required services, that a class needs
to fulfil its tasks, do not have to be made explicit. They are
buried in method calls and references inside the class code.
Furthermore it is impossible for a class to offer the same
service more than once because adding the same method or
implementing the same interface again makes no difference.
But probably the most severe problem is implementation in-
heritance, which is the sole mechanism for reuse in object-
orientation. It breaks encapsulation boundaries and there-
fore allows uncontrolled modifications of classes. Aggrega-
tion could be used to achieve the same goals as inheritance
in a more restricted way, but classes cannot be composed
from other classes. Although multiple inheritance at first
looks similar to class composition it is a different concept
indeed. By and large, object-oriented design and program-
ming have failed to provide the necessary mechanisms for
large-scale reuse. Therefore it is reasonable to search for
other more suitable meta-modeling paradigms.

In recent years component technologies have been suc-
cessfully applied to ease the problem of reuse at the pro-
gramming level [3]. They allow independently created com-
ponents to be composed into complete applications. Similar
to the evolution of object-oriented technologies, a shift is
currently happening from using ad-hoc mechanisms at the
programming level to modeling and designing with compo-
nents. The emerging discipline of Component-Based Soft-
ware Engineering aims at formalizing component-based
systems.

In our work we contribute a meta model that is not
only capable of describing various component models but
also is a component-based model itself. We expect that
component-based models exhibits the same reuse potential
and ease of integration of independent model developments
that have been observed in component-oriented program-
ming.

58

This position paper is organized as follows. Section 2 de-
scribes a simple meta model for component-based systems
and a hierarchical extension of this meta model. In Section
3 the meta model is used to model real component models.
Finally an independently developed extension is integrated
into a component model in Section 4.

2 A Component Meta Model

Meta-level Architecture. Modelers of any kind of sys-
tem are confronted with different models at different levels
of abstraction. In our case modeling component instances
leads to components themselves. On the next level abstract-
ing from components leads to a model of what the allowed
features of the different components are. This meta model
is often called a component model. Examples for models at
this level are formal specifications of the various component
technologies like JavaBeans [4], COM [5], and the CORBA
Component Model [6]. The step of meta modeling could
be repeated indefinitely but it is desirable to terminate the
chain of meta-levels at some point. In our case we look for
a meta model that can describe any component model.

Normally each meta level is an instantiation of a model
at a level above it. For the sake of simplicity we assume that
the resulting meta-level architecture is layered as shown in
Figure 1, even though there are valid arguments for a nested
architecture [7].

Component Meta Model

Component Instances

Components

Component Model

Figure 1. Layered meta-level architecture

Modeling Notation. Figure 2 illustrates the graphical
notation that will be used for visualizing models. Compo-
nents are named boxes that contain a list of Properties. The
small filled squares at the sides of the components are Pro-
vided Ports - open squares are Required Ports. Ports also
have a name and an associated type. In addition each port
specifies the number of connectors that may be attached to
that port1. A Connector is drawn as a solid line between
two ports.

Simple Component Meta Model. While designing the
component meta model we looked at the features that are

1Readers familiar with UML may find this notation confusing because
connectors with connector multiplicities look like UML associations with
their association end multiplicities interchanged.

ComponentName
PropertyName PropertyType:

PortName PortType
ConnectorMultiplicity

:

Component

PortName PortType
ConnectorMultiplicity

:

ProvidedPort

RequiredPort

Connector

Property

Figure 2. Component modeling notation

common to various component models and can be sub-
sumed under the same abstraction. Every model needs an
abstraction that holds together the elements that belong to
that model. This is the Model component. It provides
ports to hold all Components and all Connectors within that
model. The Model like all other model elements has a name
property.

Each Component has a number of properties that can be
associated with it. A Property in turn requires exactly one
Component to be connected to it. The same pattern applies
to Provided Ports and Required Ports. A Provided Port de-
notes a service that the Component provides to other com-
ponents whereas a Required Port shows that the Compo-
nent needs this service to fulfil its tasks. In addition to its
name, each Port also specifies a multiplicity for the number
of Connectors that may be connected to this port. Whether
a connection is possible or not is determined by the Port
Type. If the Port Type of the Required Port is the same
or more general than the one of the Provided Port, the two
ports may be connected. Property Types follow the same
rules for the substitution of properties in compatible com-
ponents. Figure 3 shows the resulting simple meta model.
Note that the model is both complete and minimal, i.e. it
needs all model elements to describe itself.

Conformance. To be able to substitute one component
for another it is necessary to define a conformance relation
between components. If component A conforms to compo-
nent B (in short: � � �) then A can be used in any place
where B has been used. A conforms to B if all of the fol-
lowing conditions hold:

� �� � �������	
	���� �� � �������	
	���� �

�����
 � �����
 �

�������������� � �������������� �

���������
 � ���������

� �� � ���
����
	���� �� � ���
����
	���� �

�����
 � �����
 �

��������������� �������������� �

���������
� ���������

� �� � ������
��� �� � ������
��� �

�����
 � �����
 �

������
������
 � ������
������

59

Component
name:String

requiredPort:HasRequired
0..*

RequiredPort
name:String
multiplicity:Integer

1
component:HasProvided

ProvidedPort
name:String
multiplicity:Integer

0..*
port:HasPortType

1
component:HasRequired

providedPort:HasProvided
0..*

PortType
name:String

portType:HasPortType
1

portType:HasPortType
1

Connector
name:String

connector:ConnectsProvided
0..*

connector:ConnectsRequired
0..*

providedPort:ConnectsProvided
1

PropertyType
name:String

requiredPort:ConnectsRequired
1

Property
name:String

property:HasProperty
0..*

1
component:HasProperty

propertyType:HasPropertyType
1

0..*
property:HasPropertyType

subType:GeneralizesPropertyType
0..*
superType:GeneralizesPropertyType
0..*

subType:GeneralizesPortType
0..*
superType:GeneralizesPortType
0..*

Model
name:String

parent:HasComponent
1

0..*
component:HasComponent

1
parent:HasConnector

0..*
connector:HasConnector

Figure 3. Simple component meta model

The relation �����
 � �����
 means that the type of q is
the same or more general than the one of p. This relation is
defined via the subType and superType ports on the Property
Type and Port Type components.

Obeying the conformance rules allows us to design ex-
tensions to the current meta model.

Adding a Hierarchy. For a large number of components
the simple meta model becomes rather complex and con-
fused. A well-known technique to conquer this complexity
is the introduction of a hierarchy.

In our meta model a component that contains other com-
ponents is called a Composite Component. It contains a
component of Component and a component of Model. To
allow the composite component to map its external ports
to the ports of the internal components special relay ports
are added. These conform to their non-relay counterparts.
Therefore, Composite Component conforms to both Com-
ponent and Model. In addition, through their internal con-
nector ports the Provided Relay Port acts internally as a Re-
quired Port and the Required Relay Port as a Provided Port
in turn. A similar mapping can be designed for Properties
but has not yet been integrated. Figure 4 shows the extended
meta model.

If all relay ports and the composite component are re-
moved from Figure 4 it yields the same structure as in
Figure 3. Indeed, it can be observed that each hierarchi-
cal model can be transformed into a non-hierarchical one
that has the same connector structure between the contained
components. Although important structuring information is
lost in the transformation process, it may be desirable to re-
move the hierarchy for efficiency reasons in implementation
models [8].

Up to now the component model has only been used to
model itself. In the next section we show how to model real

component models.

3 Modeling Real Component Models

Component models are at a meta level below the com-
ponent meta model. Their model elements are also com-
ponents, so it is reasonable to reuse the component meta
model at this level too. The special features of each compo-
nent model can be designed as extensions of the basic meta
model.

JavaBeans. JavaBeans [4] is a non-hierarchical com-
ponent model. Therefore, it is sufficient to extend only
elements from the non-hierarchical meta model. The Jav-
aBeans components are called Beans and their model com-
ponent conforms to Component from the meta model. A
Bean may possess Bean Properties which can have any Java
Classifier as their property type. A peculiarity of JavaBeans
is the event-based communication between components. A
Bean can fire Events which are delivered to another Bean’s
Method. Therefore, Event components conform to Pro-
vided Ports and Method components to Required Ports in
turn. The delivery of Events to Methods is achieved through
Adaptors who’s model component conforms to the Con-
nector component. The hierarchy of Event Types (which
are equivalent to Port Types) is determined by the inheri-
tance relationship between the classes that are derived from
java.util.EventObject with the exception of void which is
the most general port type. Figure 5 shows the JavaBeans
component model.

Because in the JavaBeans component model each model
element has a one-to-one relationship to a component meta
model element the mapping between the two models is
straightforward in both directions. The most problematic
part of the mapping is preserving the type information in

60

CompositeComponent
name:String

requiredPort:HasRequired
0..*

RequiredRelayPort
name:String
multiplicity:Integer

1
component:HasProvided

ProvidedRelayPort
name:String
multiplicity:Integer

0..*
port:HasPortType

1
component:HasRequired

providedPort:HasProvided
0..*

PortType
name:String

portType:HasPortType
1

portType:HasPortType
1

Connector
name:String

connector:ConnectsProvided
0..*

connector:ConnectsRequired
0..*

providedPort:ConnectsProvided
1

PropertyType
name:String

requiredPort:ConnectsRequired
1

Property
name:String

property:HasProperty
0..*

1
component:HasProperty

propertyType:HasPropertyType
1

0..*
property:HasPropertyType

subType:GeneralizesPropertyType
0..*
superType:GeneralizesPropertyType
1

subType:GeneralizesPortType
0..*
superType:GeneralizesPortType
0..*

internalConnector:ConnectsRequired
0..*

internalConnector:ConnectsProvided
0..*

connector:HasConnector
0..*

1
parent:HasConnector

component:HasComponent
0..*

Component
name:String

Model
name:String

parent:HasComponent
1

Figure 4. Extensions for the hierarchical component meta model

Bean
name:String

requiredPort:HasRequired
0..*

Method
name:String
multiplicity:Integer

1
component:HasProvided

Event
name:String
multiplicity:Integer

0..*
port:HasPortType

1
component:HasRequired

providedPort:HasProvided
0..*

EventType
name:String

portType:HasPortType
1

portType:HasPortType
1

Adaptor
name:String

connector:ConnectsProvided
0..*

connector:ConnectsRequired
0..*

providedPort:ConnectsProvided
1

JavaClassifier
name:String

requiredPort:ConnectsRequired
1

Property
name:String

property:HasProperty
0..*

1
component:HasProperty

propertyType:HasPropertyType
1

0..*
property:HasPropertyType

subType:GeneralizesPropertyType
0..*
superType:GeneralizesPropertyType
0..*

subType:GeneralizesPortType
0..*
superType:GeneralizesPortType
0..*

Model
name:String

parent:HasComponent
1

0..*
component:HasComponent

1
parent:HasConnector

0..*
connector:HasConnector

Figure 5. JavaBeans component model

property and port types.
CORBA Component Model. Although it is consider-

ably more complex than JavaBeans, the CORBA Compo-
nent Model (CCM) [6] still is a non-hierarchical compo-
nent model. CCM supports both event-based and interface-
based communication between components. The event-
based communication part is similarly structured as in Jav-
aBeans: Event Sources are Provided Ports, Event Sinks are
Required Ports, and there are Event Connectors and Event
Types.

The interface-based Provided Ports are called Facets, the
Required Ports are Receptacles. We named the Connec-
tors for Facets Interface Connectors and the Port Types are
simply CORBA Interfaces. Unfortunately, the component
model would now allow ports to be connected to the wrong
kind of port types, e.g. Factets to EventTypes. To pro-
hibit these wrong port type connections two new subtypes
of HasPortType were introduced that are unique to event

and interface ports. The same pattern is used to prevent
mixing connectors and ports of the wrong kind.

The reverse mapping of the CCM model to the compo-
nent meta model is easier than the forward mapping be-
cause there is a one-to-two relationship for Ports, Connec-
tors, and Port Types. Once again it is crucial that the Port
Type information is preserved in the mappings. When the
Port Types are considered even Ports and Connectors can be
mapped unambiguously from the component meta model to
the CCM model.

Summary. As shown in this Section, the compo-
nent meta model can also serve as a platform-independent
model who’s models can be reused and mapped to vari-
ous platform-dependent component models. Similar mod-
els and mappings have been developed for other real com-
ponent models that have been designed for special applica-
tion fields. Describing them would go beyond the scope of
this position paper.

61

4 Integrating Independently Developed Ex-
tensions

During our work on components for distributed, embed-
ded real-time systems we have developed a special compo-
nent model that is suitable for this special application field
[8]. In this model the real-time properties of a component-
based application have to be analyzed. To this end, a for-
malism has been developed which is capable of describing
abstract behavior of components. The basic concept of the
behavior model is a Path which has a number of entry and
exit points and contains sub-paths. There are several prim-
itive paths that can be used to build more complex ones.
A Computation Path simply consumes computing power,
OR forks start alternatives, AND forks start parallel com-
putations, whereas the corresponding OR joins and AND
joins stop these activities. The computational model of the
connected paths is compatible with real-time analysis and
scheduling methods. It can be used to compute optimal pri-
orities and worst-case response times for paths.

The aim of our modeling work was to integrate the path
model with an event-based component model in a way that
the new model is capable of simultaneously connecting
paths when the corresponding components are connected.
This has been achieved by firstly developing a component-
based model for paths that is completely independent of the
event-based component model. Secondly a new component
has been introduced that aggregates the component and the
path into a new component. Thirdly all event sources com-
bine provided ports and AND forks while event sinks are
required ports with OR join behavior. Finally the connec-
tors are at the same time component and path connectors be-
cause they are both aggregated into connector components.
Figure 6 shows details of the integrated model.

BehavioralComponent

providedPort:HasEventOut
0..*

1
component:HasEventOut

EventOutPort

providedPort:ConnectsEventOut
1

0..*
connector:ConnectsEventOut

Path

Component

ProvidedPort

ANDFork

EventConnector

Path
Connector

Connector

Figure 6. Integration of paths (detail)

The successful integration of the two models demon-
strates how easily new models can be incorporated.

5 Related Work

The field of modeling and meta modeling as been in-
tensively explored in the context of object-oriented design
[7, 9]. The Unified Modeling Language is now based on a
formal meta model, the Meta Object Facility (MOF). MOF
is an abstract object model and a set of mappings to vari-
ous object-oriented platforms like CORBA and Java. This
is similar to our meta modeling architecture. The main dif-
ference is that MOF (the platform-independent model) is
directly mapped to object-oriented platforms, whereas we
have introduced platform-dependent models and mappings
between models. Current efforts of the Object Management
Group to establish a Model-Driven Architecture point into
the same direction.

By contrast, meta models have not yet been used exten-
sively in component-oriented programming. The closest ap-
proximation of a meta model is the description of the ab-
stract component model for CORBA Components [6]. But
there is no formal specification of that meta model. The
same applies to ROOM [10], an object-oriented model that
bears many similarities to component-based models.

The Software Architecture community has been deal-
ing with component-based models for years [11]. Sev-
eral groups have developed various Architecture Descrip-
tion Languages (ADLs). These ADLs belong into the same
meta level as component models and are similar to our
platform-dependent models. As observed in [12] software
architecture and component models are two sides of the
same coin. In an effort to improve the interoperability of
ADLs the common language ACME [13] has been devel-
oped. In contrast to our meta model, the focus of ACME
has been on the interchange of model information. ACME
was not designed to model other ADLs.

6 Conclusion

In our position paper we describe a meta model that is
not only capable of modeling various component models
but is also a component-based model itself. This makes
it an ideal basis for modeling various component models
and extending existing models. By developing extensions
for modeling real component models and integrating a be-
havior model we show that component-based models ex-
hibit the same reuse potential and ease of integration of in-
dependent model developments that have been observed in
component-based programming.

References

[1] Object Management Group: Unified Modeling Lan-
guage, Version 1.4, OMG document formal/01-09-67,
2001

62

[2] M. Broy, J. Siedersleben: “Objektorientierte Program-
mierung und Softwareentwicklung – Eine kritische
Einschätzung”, Informatik Spektrum, 25(1), 2002, pp.
3–11

[3] C. Szyperski: Component Software – Beyond Object-
Oriented Programming, Addison-Wesley, Reading,
MA, 1998

[4] G. Hamilton: JavaBeans API Specification, Version
1.01, Sun Microsystems, 1997

[5] G. Eddon, H. Eddon: Inside Distributed COM, Mi-
crosoft Press, 1998

[6] Object Management Group: CORBA Components –
Volume 1, OMG document orbos/99-07-01, 1999

[7] J. Alvarez, A. Evans, P. Sammut: MML and the Meta-
model Architecture, available at http://www.puml.org/

[8] U. Rastofer, F. Bellosa: “Component-Based Soft-
ware Engineering for Distributed Embedded Real-
Time Systems”, IEE Proc. Software, 148(3), 2001, pp.
99-103

[9] Object Management Group: Meta Object Facility,
Version 1.3.1, OMG document formal/01-11-02, 2001

[10] B. Selic, G. Gullekson, P.T. Ward: Real-Time Object-
Oriented Modeling, Wiley, 1994

[11] D. Garlan, M. Shaw: “An Introduction to Software
Architecture”, Advances in Software Engineering and
Knowledge Engineering, World Scientific, 1993

[12] K. Wallnau, J. Stafford, S. Hissam, M. Klein: “On
the Relationship of Software Architecture to Software
Component Technology”, Sixth International Work-
shop on Component-Oriented Programming (WCOP
2001), 2001

[13] D. Garlan, R. Monroe, D. Wile: “Acme: An Architec-
ture Description Interchange Language”, Proceedings
of CASCON ’97, 1997

63

Describing and Reusing Software Design Assets for System Family
Engineering�

Alexander Fried, Herbert Prähofer
Institute of System Science

Systems Theory and Information Technology
{af,hp}@cast.uni-linz.ac.at

Abstract

System-family engineering is a new paradigm
in software engineering. A system-family is de-
fined as a group of systems sharing a common,
managed set of features that satisfy core needs
of a scoped domain. The idea behind a system-
family approach is to build a new system or ap-
plication from a common set of assets (domain
model, reference architecture, components) de-
fined from earlier developed systems belonging to
the same family. The structuring of systems into
system-families allows sharing of development ef-
fort within the system-family and as such counters
the impact of ever growing system complexity.

A system-family engineering methodology de-
mands tool support for management and reuse of
design assets. In this paper we will present ideas
and concepts to support a designer in working
with a design asset base. Different categories of
design assets that will form the asset base and de-
sign steps which define the usage of the assets will
be introduced. To automate these steps, a tool is
necessary that manages the asset base and pro-
vides functionality for browsing and searching.
We will outline the basic principles of such a tool
and describe a realization within a commercial

�Research supported by the Federal Ministry of Educa-
tion, Science and Culture of Austria. Work done in cooper-
ation with Siemens, Corporate Research, SE1

tool chain.

1. Introduction

The development of large software systems is
getting more and more complex. On the other
side, for many problems the same or similar solu-
tions have been reinvented several times. There-
fore, endeavor to establish a reuse-based software
development process reaches back to the 1960s
[6]. Different types of reuse strategies have been
pursued since then, ranging from method libraries
to component frameworks [3, 2].Software system
families, or product lines as they are sometimes
called, represent a new approach in software engi-
neering and introduce a way to deal with the com-
plexity of software development by incorporating
a planned reuse strategy [2]. In contrast to previ-
ous reuse strategies, system families are not based
on simple code reuse of small pieces, but demand
a high order reuse process [3].

A system-family is defined as a group of sys-
tems sharing a common, managed set of features
that satisfy core needs of a scoped domain. Sys-
tems in the family are developed from a set of as-
sets. The assets have been specifically created and
prepared for each family [3]. The asset base set is
not limited to ready to use software components,
but usually contains domain models, architecture
specifications, protocols, a domain glossary, etc.

64

As the methodology of system family is just
emerging, development support is very weak. To-
days design tools have not been designed with
system-family engineering in mind. Therefore,
research in the development and enhancement of
a design methodology on the one hand and in the
development of tools supporting this methodol-
ogy on the other hand is a prevailing challenge.
In this paper we will outline an approach to sup-
port the development process in a system-family
engineering environment which allows manage-
ment of assets in an asset base and supports the
designer in the usage of the assets in system de-
velopment. The approach relies on AI techniques
- most notable case based reasoning [7, 1] - and
is inspired by the previous project CASA (com-
puter aided systems architecting) [14, 11] which
has successfully used those techniques in the sys-
tem design domain.

2. Design Asset Categories

In the following, different categories of soft-
ware design assets which can be found in software
system families are introduced. Those categories
represent design assets which are used and treated
differently in the design process. In the next sec-
tion, different design steps are introduced which
show how the different design categories of de-
sign assets can be used.

The design asset categories are as follows:

� Component: A component (Figure 1a) is a
full implementation of a design asset. It
only has limited customization capabilities
and variability. For example, a COM com-
ponent will fall into this category. Essential
annotations for this component are:

– logical view: interface specifications in
the form of requirements and guaran-
tees for communication with its envi-
ronment

– physical view: requirements on its run-
time environment

– implementation view: the object code
which contains the implementation of
the component

– QoS annotations which describe the
performance of the component

� Configurable components (Figure 1b): This
is a design asset which owns more variabil-
ity than the first category. In particular, its
inner structure is not fixed but may be fur-
ther configured by the designer by plugging
in subcomponents. The plug-ins are defined
by requirements, e.g. the interfaces that they
have to implement. Additionally to the an-
notations ofcomponents, as listed above, es-
sential annotations for this category are:

– the static component structure with the
variability points

– the specification of the interfaces and
the requirements for the plug-ins

– the collaboration protocols between its
subcomponents

� Component templates and collaboration
protocols (Figure 1c): Component templates
and collaboration protocols are design as-
sets which not really represent design com-
ponents in the closer sense but only give tem-
plates to show how components can be put
together to form a reasonable whole or de-
fine a way how components can collaborate.
In [12] role modeling has been introduced as
an object oriented approach to system fam-
ily design. Collaboration protocols are in
the sense of role models as they are intended
to model general reusable forms of compo-
nent collaborations in fulfillment of particu-
lar tasks.
Essential annotations for assets of this cate-
gory are:

– the specifications of the roles of the
components in the form of interface
specifications

65

(a) component (b) configurable component

(c) interaction protocol

{plug-in}

fixed part
(subcomponent)

variable part
(subcomponent
specification)

«protocol»

Protocol AB

«protocol Role»
Protocol Role A

«protocol Role»
Protocol Role B

signal 1

signal 2

signal 3

(d) design pattern

Composite pattern
problem: hierarchical structures

Component
ClassA

Component
ClassA

subcomponents
*

(e) design solution

QoS
annotations

Design

Logical
View

Process
View

Implementation
View

Deployment
View

package mosaic
package mosaic.vis

....

process1 process2

Figure 1. Categories of design assets

– the collaboration protocol between the
components in the form of interaction
diagrams

– QoS annotations which describe the
achieved performances by using the as-
set.

� Design Patterns (Figure 1d): Classical soft-
ware design patterns like the GoF patterns
[4] represent a further category of design as-
sets. In distinction to the former collabora-
tion diagrams they are more general as they
abstract from the application domain but rep-
resent general object oriented design solu-
tions for typical software design problems.
Design patterns are typically described by:

– problem specification in the form of
a textual specification of the problems
they are intended to solve

– a generic class or object structure

– a generic protocol which shows how
the objects in the structure collaborate
for fulfillment of the task

– QoS annotations which describe the
consequences of the usage of the pat-
tern

� Design solutions (Figure 1e): Whole design
solutions from earlier design undertakings
can be seen as design assets. The design so-
lutions will be described at different levels

of abstraction and detail and in the different
views.

3. Categories of Design Steps

The introduction of the categories of reusable
design assets above was motivated by the fact
that those are used differently in the design pro-
cess. Design steps are introduced here because
they pose different requirements for an automatic
design support. In the following we describe the
design steps where those categories of design as-
sets are used.

� Selection and customization of a component
(Figure 2a): In this design step a customiz-
able component is searched and selected for
a particular design situation. Based on a set
of given requirements, the component data
base is searched and a best fitting component
can be selected by the designer.

� Configuration of a component (Figure 2b):
When a configurable component is given,
one of the plug-ins has to be configured.
Therefore, the design situation is that a set
of requirements for the plug-in are given and
a component, or again a configurable com-
ponent, which matches the requirements best
should be found.

� Incorporation of a interaction protocol or
template(Figure 2c): In this design step an

66

Peer
component

Peer
component

component

run time
environment

(a) Design step: Selection and customisation of a component

«protocol»
Protocol AB

«protocol Role»
Protocol Role A

«protocol Role»
Protocol Role B

(c) Design step: Incorporation of a interaction protocol or template

z:ComponentZ x:ComponentX y:ComponentY

a:ProtocolRoleA

b:ProtocolRoleB

{plug-in}

sub

(b) Design step: Configuration of a component

{plug-in}

p
lu

g
-i
n

x:ComponentX

y:ComponentY

Composite pattern
problem: hierarchical structures

Component
ClassA

Component
ClassB

*

subcomponents

x:ComponentX

y:ComponentY

Composite pattern

problem: hierarchical structures

Component
ClassA

Component
ClassB

*

subcomponents

children
*

parent

1

(d) Design step: Selection and incorporation of a pattern

Figure 2. Design Steps

interaction pattern which is capable to ful-
fill a particular task should be incorporated
into the current design. Given a functional
requirement, possibly stated as a use case,
a collaboration which fulfills this functional
requirement should be found.

� Selection and incorporation of a pattern
(Figure 2d): In this step, typically a problem
situation will suggest the employment of a
pattern.

� Adaptation of a design solution: The most
complex but also the most profitable design
step is the reuse of a whole or partial design
from a former project. This step proceeds in
the following substeps:

– search for design situations which are
similar to the current design situation,
which means designs with similar re-
quirements, which are done in a similar
context, and/or which show similarity
to the current (partial) design architec-
ture.

– detailed evaluation of previous design
solution for similarities and deviations
to get hints for its adaptations

– adaptation of previous design to meet
current design situation.

4. Tool Support for Asset Reuse

The above design steps describe how the design
assets (section 2) are used to design new applica-
tions. Although these steps can be used manually,
only when backed up by a tool (figure 4) an effi-
cient development in system family design envi-
ronments is possible.

Based on the current, i.e. not finished, design
and the requirements it has to fulfill, the designer
has to use the above design steps to advance his
design. The supporting tool environment should
connect the different tools and the asset base.

Given functional and non-functional require-
ments, an asset has to be retrieved from the as-
set base. To retrieve these assets we suggest two
ways:

1. Browsing

2. Automated retrieval

The problem specification used in an automated
retrieval is given in the same way as the assets are
specified themselves:

� Component specifications: Using the inter-
face specifications of a component (list of
methods), a component or configurable com-
ponent, implementing the same or a similar
interface, is searched for.

67

� Protocol: A protocol, e.g. as sequence dia-
gram, is used to search for a design pattern,
protocol or a component implementing this
protocol.

� Textual specification: A list of keywords,
possibly out of a glossary, can be used to find
an asset.

Using these specifications, the retrieval mecha-
nism searches the asset base and presents the de-
signer the best matches. In the following we will
present two approaches to accomplish automated
asset retrieval.

4.1. CBR

Case-based reasoning (CBR) [7, 1] is a well
established paradigm of artificial intelligence. In
distinction to usual AI-techniques, which require
a closed and complete form of knowledge repre-
sentation, in case-based reasoning knowledge is
coded in the form ofcases which represent a kind
of expert knowledge. Problem solving is accom-
plished by retrieving relevant cases from a case
base and adapting the best matches to meet the
problem in hand.

Figure 3 shows the problem solving cycle in
case-based reasoning [1].

Design knowledge usually is very heteroge-
neous, unstructured, and not supported by a for-
mal theory. Capturing design knowledge there-
fore has shown to be very difficult with conven-
tional techniques. Case-based reasoning how-
ever is very well suited for design problems, as is
shown by the many projects in case-based design
(e.g. [13, 8]).

We want to take this general idea of CBR and
use it to assist a designer in the creation of a new
application for a product line.

4.2. Graph Matching

To apply the CBR cycle to system families
and retrieve certain assets from the asset base, it
is necessary to possess an evaluation mechanism

New

Case

New

Case

Retrieved

Case

Solved

Case

Test,
Repaired

Case

Learned

Case

Previous

Cases

GeneralKnowledge

Retrieve

Reuse

Revise

Retain

New Problem

Figure 3. Problem solving cycle in CBR [1]

which measures the similarity of the assets to a
given specification. Graph matching in general
and the GUB (Graph matching toolkitUniversity
of Bern) algorithm in particular [9] is one of
these mechanisms being able to compare struc-
tural properties of design assets. We think that
especially for collaboration protocols, which we
intend to represent as UML sequence diagrams
(section 5), the structural features are very impor-
tant and a comparison mechanism that incorpo-
rates them will be very effective.

5. Vision of a Tool

A tool environment which supports a system
family engineering approach has to fulfill the fol-
lowing requirements:

� Close cooperation with standard tool chains,
like Rational Developer Suite and similar.

� Integrate the different tools in a chain.

� Maintain additional information required in
a systems family approach (e.g. for design
asset retrieval and reuse)

� Support maintaining and organizing of de-
sign assets

� Fast and accurate retrieval of design assets
from the asset base based on requirement and
partial design specifications.

68

The tool environment that we are prototyping will
rely on the following concepts:

� Unified Modeling Language (UML) for spec-
ifications

� UML metamodel

� UML metamodel integration: Special speci-
fication forms will be introduced

� Open APIs: to access various tools

Figure 4 shows the overall architecture of the pro-
posed tool environment. It consists of the follow-
ing parts:

� External Tools: In the external design tools
with their Open API the various specifica-
tions are kept and accessed.

� UML metamodel layer: The UML meta-
model layer provides a standardized access
layer to handle the various specifications.

� Asset Base: Design assets will be described
as meaningful aggregations of other specifi-
cations, mainly UML specifications.

� Indexing Trees & Domain Glossary: In this
part, information is maintained which is kept
to support efficient browsing and retrieval of
design assets.

� Retrieval & Browsing: There will be design
modules to assist the user in retrieval of de-
sign assets.

� Asset Retaining & Organization: Also mod-
ules will be needed to assist the user in re-
taining new design assets and organizing the
asset base.

E
x
tT

o
o

ls

R
o
s
e

A
P

I

T
o

g
e
th

e
r

A
P

I

D
o
o
rs

A
P

I

R
e
q
u
is

it
e
P

ro

A
P

I

Design Support

Retrieval &

Browsing

Asset Retaining &

Organisation

D
e

s
ig

n
A

s
s

e
t

B
a

s
e

a
n

d
O

rg
a

n
is

ta
ti

o
n

A
s
s
e
t
B

a
s
e

In
d
e
x
in

g
T

re
e
s

&

D
o
m

a
in

G
lo

s
s
a
r

UML Metamodel Object Layer

Figure 4. Architecture of the tool environment

5.1. Assets Description within the UML Metamodel

After having outlined the principles of asset de-
scription techniques in the last sections, we con-
tinue to describe how design assets should be
specified in the context of the UML modeling no-
tations.

Asset specification should be closely integrated
into the UML modeling and metamodeling con-
cepts. An approach is proposed where asset speci-
fications are basically meaningful aggregations of
other specifications. Referring to the description
techniques proposed in [5] and reviewed above,
a design asset consists of several other specifi-
cations each with its particular meaning and pur-
pose. Therefore, design assets just group several
other specifications.

In the following a specification formalism for
design asset description is introduced. This spec-
ification forms are all derived from the most gen-
eral ModelElement type of UML metamodel
[10] and in that way are integrated into the UML
metamodel type hierarchy.

Figure 5a shows a type hierarchy with special
model elements introduced for design asset de-
scription. The purpose of the various types are

69

(a) Asset Specification in the UML Metamodel (b) Component Specification

ModelElement

Element

containedelems
1..*

Specification

QoSAnnotation InformalSpecification

TexturalSpecification

RequirementText

1..*

1..*

supplier

client

Relationsship
0..*

spec_relationships

Association Dependency

0..* 0..*

RealizedBy

ImplementedBy

DerivedFrom

Binding

Usage

Abstraction

CompositeSpecification

Relationship
Dependency ModelElement

CompositeSpecification Specification

ComponentSpec

InterfaceSpec

CompositeComponentSpec

PatternSpec

OperationSpec

Relationship

0..* spec_relationship

0..*
0..*

1..*
1..*client

supplier

Element

1..* containedelem

1
requirement

guarentee
1

1

1

1

1

1

1

1

1

1

1

physical_view

process_view

logical_view

collaboration

postcon

precon

signatur

coupling

solutionspec

problemspec

interface
1..*

operation
1..*

Figure 5. Specification Overview

as follows:

� Specification: Base type for design as-
set descriptions. ASpecification is
just a grouping of otherModelElements
(designed after the composite design pattern
[4]).

� QoSAnnotation: A QoSAnnotation
gives a mostly informal notation of the per-
formance and quality of service aspect for a
design asset.

� InformalSpecification: The In-
formalSpecification type is a base
type for specifications which are not in a for-
mal language. Derived from this base type is
the typeTextualSpecification and
from this the special typeRequirement-
Text.

� CompositeSpecification: A Com-
positeSpecification not only main-
tains a set of sub model elements but also
defines various relationships between those.

� ComponentSpec (Figure 5b): This type is
used to describe the different categories of
design assets as introduced in section 2. The
specification is just an organization of vari-
ous otherSpecifications in accordance
to the notion of a component as introduced

in [5] and shown in Figure 1.
A ComponentSpec maintains a collection
of Specifications consisting ofguar-
antees (e.g. interfaces) andrequire-
ments.
Additionally, the ComponentSpec also
maintains a list of interface declarations
(interface) which are most important in
the functional view. An interface normally
will contain information regarding the guar-
antees and requirements.
Also the component groups all its specifica-
tions into subgroups according to its mem-
bership to thelogical_view, physi-
cal_view, andprocess_view.

� InterfaceSpec: The Interface-
Spec is a subtype ofComponentSpec
which only contains information regarding
the interface description of a component.

� OperationSpec: An OperationSpec
is aComponentSpec which has pre- and
postconditions and an operation signature
specification.

� CompositeComponentSpec: A Com-
positeComponentSpec is a Compo-
nentSpec which defines subcomponents
and a coupling.

70

� PatternSpec: A PatternSpec is used
to describe a design pattern [4].

6. Summary and Outlook

In this paper we have presented concepts and
techniques for design asset management, re-
trieval, and reuse within a system-family engi-
neering approach. Different categories of design
assets have been introduced and we have shown
how to represent them as UML metamodel exten-
sions. Moreover, we have outlined how various
design steps should be supported by a tool envi-
ronment.

Currently,a prototype of a tool environment is
in development. An abstract interface based on
the UML metamodel is defined and a partial im-
plementation of this interface to connect to Ra-
tional Rose is realized. The GUB toolkit is inte-
grated into the prototype and it is possible, given
a sequence diagram as query, to search for similar
sequence diagrams, which are stored in Rose.

Next steps in the development will be the im-
plementation of the asset specification techniques
and the set up of an example asset base for a do-
main. Then we will experiment with different re-
trieval techniques and investigate methods to al-
low adaption of design assets to meet the special
design requirements.

References

[1] A. Aamodt and E. Plaza. Case-based rea-
soning: Foundational issuesissues, method-
ological variations, and system approaches.
AI Communications, 7(1):39–59, 1994.

[2] Jan Bosch.Design and use of software ar-
chitectures. Addison-Wesley, 2000.

[3] Paul Clements and Linda Northrop.Soft-
ware Product Lines. Addison Wesley, 2001.

[4] Erich Gamma, Richard Helm, Ralph John-
son, and John Vlissides.Design Patterns.
Addison Wesley, 1994.

[5] Peter Graubmann and Axel Klein. Require-
ments and techniques for component inter-
face description and component selection.
Technical report, Siemens ZT, 2000.

[6] Ivar Jacobsen, Martin Griss, and Patrik Jon-
sson.Software Reuse - Architecture, Process
and Organization for Business Success. Ad-
dison Wesley, 1997.

[7] Janet Kolodner. Case-based reasoning.
Morgan Kaufmann, San Mateo, CA, 1993.

[8] M.L. Maher and G. de Silva Garza. De-
veloping case-based reasoning for structural
design.IEEE Expert, 11(3), 1996.

[9] B.T. Messmer. Efficient graph matching
algorithms for preprocessed model graphs.
PhD thesis, University Bern, Switzerland,
1996.

[10] OMG. Unified modeling language specifi-
cation - version 1.4. www.omg.org, 9 2001.

[11] H. Praehofer and J. Kerschbaummayr.
Case-based reasoning techniques to support
reusability in a requirement engineering and
system design tool.Engineering Applica-
tions of Artificial Intelligence, 12, 1999.

[12] Trygve Reenskaug, Per Wold, and Odd Ar-
ild Lehne. Working With Objects. Manning
Publications, Greenwich, 1995.

[13] Y. Reich. The development of bridger: A
methodological study of research on ma-
chine learning in design.Artificial Intelli-
gence in Engineering, 8:217–231, 1993.

[14] C. Schaffer.Computer Aided System Archi-
tecting (CASA): Requirement-driven design
of multi-disciplinary systems. PhD thesis,
JKU Linz, Austria, 1999. (in German).

71

A Preliminary Analysis in Mapping

UML Use Cases to State Machines

Luca Pazzi

University of Modena and Reggio Emilia
Dipartimento di Ingegneria dell’Informazione

Strada Vignolese 905, Modena, Italy
email: pazzi@unimo.it

Abstract. UML behavioral modelling has its roots in two well distin-
guished paradigms: Jacobson’s use case modeling, which elicits user spec-
ification knowledge to sequence diagrams through ITU Message Sequence
Charts (MSC), and Rumbaugh’s OMT state-based modelling, which al-
lows to describe the behavior of object classes and more complex design
artifacts through Harel’s Statecharts. Although MSCs remain the main
tool for describing the separate scenario which make a UML use case, a
state-based global view of a whole use case has been advocated by many
authors and seems desirable, since Sequence Charts – inherently bound
to a linear view of time – are less expressive than state based formalisms
– allowing for modelling branching and cyclical behavior. This paper re-
ports a preliminary study in bridging the gap between the two paradigms,
by showing some initial steps towards the integration od separate linear
descriptions into a single state description of the world involving different
actors.

1 Introduction

A use case is the “high level description of a coherent unit of func-
tionality to be provided by a system under design to a set of one or
more actors participating in it” [2]. Use cases are realized by collab-
orations of objects acting in concert [1] that provide some behavior
that is bigger than the behavior represented by the sum of the parts.

The use case behavior is not represented as a whole, rather by
means of its instances, named scenarios, which are linear sequences
of events drawn from the whole use case. Scenarios can be thus
thought of as being slices of the whole use case behavior and as
such analysed and described separately one from the another. Sce-
narios are described within the UML by the messages exchanged
the participating actors through sequence diagrams. State based for-
malisms provide obvious representational advantages over sequence

diagrams. In first place they are not bound to a strictly linear repre-
sentation of time. In second place states can be seen as snapshots of
complex situations occurring within a use-case scenario; state tran-
sitions, conversely, represent the feasible connections among such
snapshots, that is the events occurring in the scenario. The real ad-
vantage is that, by the concept of state, it can be easily established
that a situation within a scenario is the same situation within an-
other scenario. This allows an easy merging of different scenarios
into a single representation, that is the use case seen as a whole.

The paper shows how, by a simple textual decomposition crite-
rion, global states belonging to a whole use case can be easily identi-
fied from the use case component scenarios. Once such global states
are found it is shown how scenario subparts (subscenarios) may be
easily integrated into such a state based vision as state transitions.
Finally, the translation of a sequence diagram into a state transition
is fully detailed.

(I)

Caller Router Receiver

issue_phone_call

find_route_to_receiver

check_receiver

available

connection_established

b

a

c

d

1

2

3

c

f

b

a

not_available

receiver_not_available

(III)

5

Caller Router Receiver

issue_phone_call

find_route_to_receiver

check_receiver

1

2

Caller Router Receiver

issue_phone_call

find_route_to_receiver

a
1

no_route_available
b

e

4

(II)

Fig. 1. The Message Sequence Charts depicting three scenarios in a phone call use
case. The diagrams show scenario fragmentation obtained through the bifurction points
identified in the text.

2 Adding modularity to textual scenarios

Sequence diagrams (Message Sequence Charts) allow to represent
the sequence information pertaining the interactions among differ-
ent entities involved in a complex behavior, namely the whole use
case. In the example carried out in this Section, the use case ”tele-
phone communication” is depicted by different sequence diagrams
(Figure 1). We start by reporting the full text of the corresponding
scenarios:

Scenario 1 • the caller issues a call to the receiver through the
router; the router seeks a free route to the receiver • once the free
route to the receiver is found, the router checks whether the receiver
accepts the call from the caller • the receiver accepts the call and the
connection is established •

Scenario 2 • the caller issues a call to the receiver through the
router; the router seeks a free route to the receiver • no route is
available to the receiver; the caller is reported a no-route
error •

Scenario 3 • the caller issues a call to the receiver through the
router; the router seeks a free route to the receiver • once the free
route to the receiver is found, the router checks whether the receiver
accepts the call from the caller • the receiver does not accept
the call from the caller; the caller is reported a specific
error •

The first step towards scenario modularization is achieved by
identifying subparts of the original scenarios; these on their turn
correspond to subsequences in the MSCs (shown as dashed regions
identified by boxed labels, such as 1 , 2 , 3 , etc.). We segment
scenarios by first identifying bifurcation points in the text of the sce-
narios, that is points in which scenarios become different one from the
anothers. We denote such point by bullet dots (•), as in the text of
Scenario 1. Subsequently segmentation points have been transferred
to the corresponding MSC diagram (Figure 1, Diagram (I), yelding
the three subsequences denoted respectively by 1 , 2 , and 3 . Other

subsequences (namely 4 , and 5) are identified in Scenarios 2 and 3

and matched to the corresponding MSCs (Figure 1, Diagrams (II)
and (III). The original scenarios can now be rewritten in a compact
form (we name bullet points as in Figure 1):

Scenario 1
a• 1

b• 2
c• 3

d•
Scenario 2

a• 1
b• 4

e•

Scenario 3
a• 1

b• 2
c• 5

f
•

Unfortunately, compactness does not correspond here to clarity.
For example it would be desirable to view at a glance that the use
case behavior presents bifurcations (branches) in points b and c.
Moreover it can be observed can be better observed that the use case
presents different end points correspond to three different feasible
evolutions of the state of the world, respectively points d, e and
f . The same information may be better presented by a graph-like
diagram like the one in Figure 2.

1 2 3

4 5

a b c d

e f

Fig. 2. The overall topology of the use case of Figure 1 shown by a directed graph.

3 From sequence diagrams to state machines

As shown by the example above it is clear that a linear view of time is
not sufficient for most of the complex situations, which often present
branches (and loops) in their state evolution. Although there have
been various attempt in providing MSC with conditional (and loop-
ing) constructs, (we note that) the subtle point is that no construct
is provided for the lifeline which denotes the evolution of the system
as a whole.

Since we already put bullet points in correspondence of the states
of the world, it seems appropriate to consider the whole behavior of
the use case as a state diagram. Such intuition is also enforced by
the fact that a state diagram is a directed graph, that is it allows to
represent branches, cycles and loops in the evolution of the system,
thus allowing full expressivity to the use case.

For example, in Figure 2, the line joining point a to b is, es-
sentially, a state transition from state a to state b labeled by the
sequence diagram of MSC 1 . The intended meaning is that, start-
ing from the world in state a and by applying the trasformations
described in the MSC 1 , we reach a state of the world which is
named b.

Observe Figure 3: suppose the world (i.e., the system) is found in
a state called a before the event e happens, and in a state b afterward.
Since an event is meant to denote a change of state, entity X moves
from state x to state x′ as event e is sent to Y , as well as entity Y
moves from y to state y′ as event e is caught and processed.

4 Conclusions and open issues

Representing use cases by state diagrams allows to express the be-
havior of complex system in a way more clear and effective than
single sequence diagrams. We have shown how to achieve the trans-
lation of sequence diagrams into more general graph representations,
which can be read as the state diagram representation of the use case
taken as a whole. Moving from sequence diagrams to state machines
requires, however, to address the following open issues:

1. the system line may not be present in the scenarios; in other
words, most of the designs may consider the state evolution of

X

e
a

K

Y

x

x’

y

y’

W

b

a b
K

(i) (ii)

Fig. 3. Comparing a state transition (i) with a MSC (ii). We added a lifeline W to
the MSC which gathers fragmentation points (system states). Corresponding states
x, x′, y, y′ have been marked on the original components’ lifelines.

the system implicitly, as in the example, where we added a further
lifeline, named w in order to suggest “behavior of the whole”;

2. modelling a complex behavior by a state machine requires to
address consistency issues in the following cases:
(a) different paths branching out of a node;
(b) different paths joining into a node; in this case it is required

to state that the system is left in the same state by any of the
converging paths, since they converge to the same point. This
in turn requires to fully exploit the notion of system state
semantics.

References

1. Bruce Powel Douglass. Real-time UML: Developing Efficient Objects for Embedded
Systems. Addison-Wesley, 1998.

2. James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Lan-
guage Reference Manual. Addison-Wesley, 1998.

77

Coupling MDA and Parlay
to increase reuse in telecommunication application development

Babak A. Farshchian Sune Jakobsson
Erik Berg

Telenor Research and Development
Otto Nielsensvei 12

NO-7004 Trondheim, Norway
fBabak.Farshchian, Sune.Jakobsson, Erik.Bergg@telenor.com

Abstract

MDA (Model-Driven Architecture) has been coined by
OMG (Object Management Group) as the next step in ap-
plication integration. Being based on standards already
embraced by a large segment of the software engineering
industry, MDA promises fully automatic model transfor-
mation. MDA enables application developers to use for-
malisms such as UML to specify their applications in a
totally platform-independent way. Later transformations
to platform-dependent software are automated. Parlay, a
middleware specification developed for the telecommunica-
tion domain, is on the other hand promising network inde-
pendent development and deployment of telecommunication
services and applications. In this position paper we report
on our experience from a Eurescom project where we try
to couple MDA and Parlay in order to increase reuse in
the telecommunication domain. Telecommunication service
development is hampered by long development cycles and
low level of reuse. We describe how MDA approach can
be applied to telecommunication domain through the use of
Parlay. We believe this approach has substantial potential
for reducing development costs for many telecommunica-
tion operators. In addition, developed models and applica-
tions can be deployed on a wide variety of platforms without
much change.

1. Introduction

Market situation in telecommunication is changing
rapidly due to the convergence of Internet and telephony
networks and the removal of monopoly situations in many
countries [7]. This change poses great challenges and
opportunities for telecommunication operators and service
providers. One such challenge has been the increased com-

petition in providing advanced value-added services to the
customers [3]. The abandoning of monopolist market mod-
els has brought with it a pressure on incumbent carriers to
make available their network resources to be used by third-
party service and application providers [8]. This creates a
specialization of the telecommunication application devel-
opment business that again puts pressure on both network
operators and third-party application providers to optimize
their development processes.

Value-added services and applications in convergent net-
works increasingly contain a large software part, as opposed
to traditional telecommunication services where software
played a more modest role. Application developers resort
to (often complex) software solutions for accessing and de-
ploying network resources offered by network operators.
Software is also used in order to create innovative applica-
tions that make use of a mixture of network resources (e.g.
applications operating transparently on both Internet and
telephony networks and utilizing corporate databases). In-
creased competition and the innovative nature of convergent
networks make it necessary to deploy development pro-
cesses that allow for rapid application development so that
developers can experiment with different application types
without binding too much resources. Issues that have been
of central importance for the software engineering commu-
nity, such as reuse and object-oriented software develop-
ment, is becoming more and more important also in the
telecommunication domain.

One of the main software engineering issues fac-
ing telecommunication application developers is reuse.
Telecommunication networks have traditionally been pro-
prietary, developed as a result of strategic alliances be-
tween equipment producers and incumbent network oper-
ators. Similar applications have had to be developed mul-
tiple times on each proprietary platform. The situation is
not to be changed in the near future due to large invest-

78

ments in proprietary network technologies. Nevertheless,
the increasing number and variation of offered services and
applications make the situation critical. There is an urgent
need to enable application developers to reuse their applica-
tions on different proprietary platforms.

Important initiatives are taken in order to address this is-
sue. In this paper we will look at two of these initiatives,
i.e. Parlay and MDA (Model-Driven Architecture). Par-
lay is a middleware specification developed specifically for
the telecommunication domain. Parlay enables network op-
erators to open up their networks and make available their
network resources in a systematic and standard manner [8].
Parlay enables reuse at the component level. Although Par-
lay allows service providers to reuse their services on multi-
ple networks, there is little support for reuse at the applica-
tion modeling level. Another relevant initiative, started by
the software engineering community, is OMG’s MDA [12].
MDA addresses reuse at the business modeling level. MDA
aims at increasing automation in software development by
deploying automatic model transformation techniques. The
goal is to specify applications in a business modeling lan-
guage such as UML, and to have some tool automatically
create the software.

Although both Parlay and MDA are in their early days,
they have gained large industry support. Supporting tools
are entering the market, and an increasing number of com-
panies are deploying solutions based these technologies. In
order to evaluate MDA we are participating in a Eurescom
project (see [4]) together with a number of telecommuni-
cation operators and tool vendors. Our goal in this project
has been mainly to evaluate MDA as a possible enabler for
improving application development activities undertaken by
many telecommunication companies. This paper describes
some of our experiences so far, in particular those related to
reuse at application modeling level.

The paper is organized as follows. First we give a short
overview of Parlay and MDA. We then describe how MDA
and Parlay can be used in combination in order to improve
application development activities. A discussion of the im-
plications on reuse is then provided before we conclude the
paper.

2 Overview of Parlay

Parlay [8, 13] is a platform-independent, object-oriented
middleware specification developed specifically for the
telecommunication domain. Parlay is being developed by
the non-profit Parlay group as an open specification (see
www.parlay.org). Figure 1 shows an overview of how Par-
lay works.

The conventional approach to service provision in
telecommunication networks allows only the network oper-
ator to develop applications (e.g. voice messaging, follow-

Network operator's domain Application developer's domain

Network operator's domain

P
ar

la
y

A
P

Is

Application developer's domain

A) Network operator is also application
developer. Proprietary services and

interfaces.

B) Application developer/provider
can be a separate organization.
Standard interfaces are needed.

Resource
A

Resource
B

Resource
C

Service
A

Service
B

Service
C

Appl. A Appl. B Appl. C

Resource
A

Resource
B

Resource
C

Service
A

Service
B

Service
C

Appl. A Appl. B Appl. C

Figure 1. Parlay enables third-party appli-
cation developers make use of network re-
sources.

me functions) based on its own services. These services and
applications are normally developed specifically for the net-
work operator’s proprietary network, and are not reusable
in other contexts (Figure 1.A). Parlay defines a standard in-
terface towards the network operator’s environment (Fig-
ure 1.B). This environment includes resources such as fixed
and mobile networks. Services that provide access to these
resources are standardized through Parlay APIs. Applica-
tion developers can call API methods on network operator’s
services and make use of the underlying resources in their
own applications. This approach allows application devel-
opers to develop advanced applications utilizing a mixture
of services and resources (e.g. fixed and mobile telephony,
Internet, corporate databases). In addition, the approach in-
creases reuse by making application specification indepen-
dent of underlying network.

Parlay APIs’ architecture is shown in Figure 2. The
Framework Interface is an authentication and service dis-
covery component that is a standard part of any Parlay im-
plementation. This interface provides standard methods for
authentication of third-party external applications that wish
to make use of network services. Framework Interface also
provides standard methods for publishing and discovering
existing services in a network.

Service interfaces provide standard access methods to
common telecommunication services. Parlay specification
contains a large number of such service definitions (e.g. call
control, session control, messaging, account management)
but allows for new services to be added. An (external) appli-
cation has to be authenticated before it can look for desired

79

Parlay APIs

Resource
A

Resource
B

Resource
C

Framework
Interface

Service A
Interface

Service B
Interface

Application
A

Application
B

Application
C

Figure 2. Parlay APIs’ overall architecture.

services. Once contact with a service is established, the ap-
plication can make use of the service. Parlay also specifies
a callback mechanism that allows services to call methods
on the applications (e.g. to notify an application if a call is
made to a specific number).

Parlay enables reuse beyond what is available in cur-
rent telecommunication networks. Service definitions can
be reused. The same service definition can provide access
to a variety of resource types. For instance, a call control
service can be used to connect users using mobile, fixed, or
Internet phones, without the service interface being changed
for each type of phone. In addition, Parlay opens for reuse
at the application level. Applications need to deal only with
Parlay APIs. Application developers can specify their ap-
plications without taking into consideration what kind of
network they will be deployed on.

Although Parlay enables reuse of components (i.e. ser-
vices), it does not support higher-level reuse, such as reuse
at the application model level or reuse of component com-
positions. What happens in the application level, e.g. what
kind of business models are developed and reused, is out-
side Parlay’s scope. This is where the MDA approach
promises to be of benefit.

3 Overview of MDA

MDA (Model-Driven Architecture) is OMG’s vision of
enterprise application integration [2, 10]. MDA is based
on model transformation principles, some known from ear-
lier research and development within the CASE (Computer-
Aided Software Engineering) community. MDA is a
promising approach mainly because it is based on already-
embraced industry standards such as UML (Unified Mod-
eling Language) and XML (eXtensible Markup Language),
which provide an organizational and technological spring-
board for the approach. In addition, the deployed standards
already offer a level of formalism that makes it feasible to
perform model transformations with a reasonable level of
automation.

Figure 3 shows an overview of the MDA approach.
At the heart of the approach is the Meta Object Facil-
ity (MOF) [9]. MOF is a meta metamodel that is used to
define all the metamodels (i.e. modeling languages) in an
MDA architecture. MOF is used to define UML, which is a
business metamodel. MOF is often mapped into an OMG-
defind XML standard called XMI (XML Metadata Inter-
change). XMI is used for exchanging models among tools,
e.g. for transformation purposes.

MOF

Business
metamodel

Platform
metamodel

PSM

Transformation
rules

PIM

Figure 3. An overview of the MDA approach.

Any number of metamodels can be defined using MOF.
MDA approach is based on developing separate metamod-
els for business domains (e.g. telecommunication) and tech-
nological platforms (e.g. Parlay). A set of transformation
rules formally define how models defined using one meta-
model can be transformed to models defined using another
metamodel.

An application developer can use a business metamodel
to model business applications. An application model is
in this way developed to be totally independent of tech-
nological platforms the application will be deployed on.
Such an application model is called a Platform-Independent
Model (PIM). Platform-Specific Models (PSMs) are on
the other hand defined specifically for the target platform.
PSMs are ideally not developed by people but are generated
automatically using proper transformation rules.

MDA is an enabler of reuse at application model and
metamodel levels. Reuse at the model level is mainly due
to platform-independent development of application mod-
els (i.e. PIMs), but also because of the possibility to reuse
model segments and component compositions. The same
PIM can be used to generate several different PSMs by sim-
ply defining new transformation rules. At the metamodel
level, one metamodel needs to be developed for each busi-
ness domain and each technological platform. Transforma-
tion rules themselves are of course reusable across meta-
models.

Although MDA is notation-independent, OMG’s recom-
mendation and a large part of the development within the in-
dustry are based on UML. UML is particularly suited for the

80

MDA approach because of its extension mechanisms [1].
Business and platform metamodels can be defined as UML
profiles (for an example of UML profiles see [6]). In addi-
tion, having a formal meta metamodel ensures consistency
and interoperability.

4 Using MDA and Parlay to develop applica-
tions

Using the MDA approach in combination with Parlay
is one of our main research goals. Such a combination
has the potential to increase the level of reuse significantly.
PSMs for each proprietary platform need to be developed
only once, by the network operator or other software ven-
dors. Third-party application developers will only need to
develop PIMs for their applications and reuse these PIMs on
multiple platforms, possibly belonging to multiple network
operators. The overall process is shown in Figure 4. To
the left of this figure we see the application developer who
develops the PIM for the desired application. Transforma-
tion rules are used by the development tool to automatically
create a PSM, which is an application directly written for
Parlay. This application will make use of any network re-
source that offers a Parlay service interface.

Transformation
rules

Parlay
metamodel

IN

3G

Internet

PSMPIM

Telecom
language

Model

Figure 4. MDA-enabled development of
telecommunication applications.

In order to enable this approach we need to start by
defining a business metamodel (modeling language) for
the telecommunication domain. This metamodel will be
MOF-compliant and will focus on the specific needs of the
telecommunication industry. Some of these needs are iden-
tified to be [5]:

� Telephony networks: UML needs to be extended with
concepts that constitute the domain of telephony net-
works and related services. Examples of such con-
cepts are call, conference, voice message, and tele-
phone number. These concepts are independent of any
underlying technology and should be specified in ap-
plication PIMs.

� Telecommunication service access and subscription:
UML needs to be extended with concepts to allow
application developers to model how customers, cus-
tomer profiles, services, access to services, subscrip-
tion etc. will be managed for the purpose of billing
and resource allocation. Access and subscription man-
agement is also mainly independent of the underly-
ing technologies (except where there are differences
in prices based on the used technology) and should be
modeled in PIMs.

� Telecommunication network management: Assuring
that a telecommunication network is functioning prop-
erly is crucial for the customers. A number of param-
eters, such as fault management policies, performance
management, and security management can be mod-
eled independently from the underlying platform.

� Quality of service: Quality of service is in many cases
a part of the application domain, independently of
what platform the application is running on. Some ap-
plications, e.g. emergency numbers, will require very
high availability, while other applications e.g. video
conferencing will require high performance. These pa-
rameters should typically be defined in a PIM.

Developing a metamodel for the telecommunication do-
main is a great challenge. Such a metamodel should have
enough expressive power in order to satisfy both conven-
tional telecommunication needs and the needs of the in-
creasing number of services and applications that are based
on convergent networks. Such a metamodel can be devel-
oped as a completely new modeling language, or it could be
a specialization of UML. In both cases compliance to MOF
is crucial in order to allow for interoperability with future
MDA-enabled tools.

A platform metamodel, and corresponding transforma-
tion rules, will take as a starting point the Parlay API spec-
ifications. These specifications are already documented in
UML, and it is expected that the influence of UML on Par-
lay specifications will increase as UML 2.0 is accepted by
the industry. Compliance with UML will make it easier to
develop transformation rules that can automate the transfor-
mation task to a satisfactory degree. In fact, the formal spec-
ification of UML 2.0, with the increased centrality of MOF,
also makes it feasible to talk about full-scale roundtrip en-
gineering.

In applying the scenario described above, development
tools and environments will play a crucial role [11]. MDA-
enabled tools are entering the market. This new generation
of tools will have a meta-CASE flavor in that they will en-
able flexibility both in front-end and back-end in order to al-
low different business and platform metamodels to be used
in combination. Defining architectures for such tools is an
important part of our work.

81

5 Enabling reuse

To sum up, our approach will increase reuse in the fol-
lowing specific points:

� Reuse of application models: The business metamodel
and the resulting application models will be totally
independent of the underlying service infrastructures,
and will focus solely on the business area to be sup-
ported by the telecommunication application. This is
in accordance with the MDA vision. This means that
when new services with better quality make their way
to the market (e.g. 2.5G and 3G services) the appli-
cation models can be reused without much change.
In fact, we envisage UML packages that model basic
telecommunication applications (e.g. number conver-
sion, personal answering machines, voice mail) to be
developed by third-party vendors.

� Reuse of application and architecture patterns: The ap-
proach will offer the possibility to reuse specific com-
binations/patterns of service components. Such pat-
terns will offer a significant advantage for application
developers who want to customize their applications to
the needs of different customer groups.

� Reuse of service components: Services defined in form
of Parlay service interfaces will be reusable in case of
changes in the underlying network technologies.

� Metamodels and transformation rules: Metamodels
and transformation rules developed during our re-
search are generic and can be reused. In fact, they are
planned to be incorporated into MDA-enabled tools
developed by our partners. Knowledge transfer activi-
ties, in particular towards standards bodies (e.g. OMG)
is also a high priority activity within our research.

6 Conclusions and future work

We have described our preliminary results from a Euro-
pean Eurescom project where we aim at coupling Parlay
and the MDA approach to increase reuse in telecommu-
nication application development. The approach is based
on developing a MOF-compliant modeling language for the
telecom domain that addresses the specific needs of this do-
main. Models developed using this language will be auto-
matically transformed into Parlay applications using a set of
transformation rules. The approach is ideal for third-party
application developers who want to build applications on
top of the network infrastructures offered by large network
operators.

The work reported here will be developed further in a
European IST project starting in 2002. Our future work in

the context of this upcoming project is to develop the differ-
ent components of the approach. Our particular focus will
be on developing a business metamodel for the telecommu-
nication domain, an architecture for MDA-enabled tools,
prototypes of MDA-enabled tools, and methodologies for
MDA-enabled application development within telecommu-
nication. We also plan to run a number of experiments in-
volving real world cases. These experiments will allow us
to measure the gained amount of reuse, in particular with
respect to component reuse, pattern reuse and application
model reuse, which are the main expected advantages of
using the combined MDA-Parlay approach.

7 Acknowledgements

The work reported here is a result of the Eurescom P1149
project. We thank all project members for cooperation and
feedback on the ideas presented here.

References

[1] S. S. Alhir. Unified modeling language extension mecha-
nisms. Distributed Computing, pages 29–32, Dec. 1998.

[2] J. Bézivin. From object composition to model transforma-
tion with the MDA. In TOOLS’ USA, Santa Barbara, CA
USA. IEEE, 2001.

[3] Y. De Serres and L. Hegarty. Value-added services in the
converged network. IEEE Communications, 39(9):146–154,
Sept. 2001.

[4] Eurescom P1149 project team. Impacts of changes in enter-
prise software construction for telecommunications, 2002.
http://www.eurescom.de/mda4telecom.

[5] Eurescom P1149 project team. Model driven architecture -
Adaptations and impacts for the telecom domain. Project
deliverable, Eurescom, Heidelberg, Apr. 2002.

[6] M. Fontoura, W. Pree, and B. Rumpe. The UML profile for
framework architectures. Addison–Wesley, Boston, 2002.

[7] R. M. Frieden. Managing Internet-driven change in inter-
national telecommunications. Artech House, 2001.

[8] A.-J. Moerdijk and L. Klostermann. Opening the networks
with Parlay/OSA APIs: Standards and aspects behind the
APIs. Draft of submitted article, 2002.

[9] Object Management Group. Meta Object Facility (MOF)
v1.3.1. Specification, OMG, 2002.

[10] OMG Architecture Board MDA Drafting Team. Model
driven architecture – A technical perspective. Technical re-
port, OMG, 2001.

[11] J. Siegel and OMG Staff Strategy Group. Developing in
OMG’s model-driven architecture. Technical report, OMG,
2001.

[12] R. Soley and OMG Staff Strategy Group. Model driven ar-
chitecture. White paper, OMG, 2000.

[13] The Parlay Group. Parlay APIs 2.1. Technical white paper,
2001.

82

