
Protecting Co-operating Mobile Agents Against
Malicious Hosts

�
�� @

@@

@
@@ �

����������������������

��������������������

@@@@@@@@@@@@@@@@@@@@ ��������������������
��������������������

@@@@@@@@@@@@@@@@@@@@

�
��

@
@@�

��

@
@@

Regine Endsuleit and Thilo Mie

Interner Bericht 2002-8

Institut f�ur Algorithmen und Kognitive Systeme

Universit�at Karlsruhe (TH)

WS 2002/2003

ISSN 1432-7864



Abstract. We propose a security model for open multi-agent systems. Given a user-de�ned

task T , we generate a set of mobile agents which realize a common functionality that solves

T . Those agents co-operate with each other and build an autonomous community. Using

a scheme for secure distributed computations, this community is able to perform secure

computations without requiring interaction with a trusted party. For this paper, we have

chosen Canetti's model for secure multi-party computations (see [Can01]). Unfortunately,

the problems arising from the migration of agents are not covered by this technique. We

present an extended model that o�ers a solutions to this. Thus, we yield guarantees for con-

�dentiality of secret data, detection of unauthorised code and data changes, reestablishment

of corrupted agents and prevention from malicious routing.

1 Introduction

Mobile agents are designed to roam the network autonomously and have their code

executed by foreign hosts. (Details about multi-agent systems can be found in [Wei99].)

They are the consequent answer to our growing networks as well as to the user's need

to collect, �lter and process huge amounts of information even though his bandwidth or

computing resources might be limited. The broad range of applications includes mobile

computing, information retrieval in large repositories and e-commerce applications like

price negotiations. But until now there is no general solution to the security problems

in such open multi-agent systems. Some authors (see e.g. [ST98],[LM99]) worked on a

technique called "function hiding" to achieve con�dentiality of the computation and

protection against software-piracy. In a function hiding scheme a sender A encrypts a

function f he wants to be executed by a second party B. Then B evaluates the encrypted

function E(f) on his input x. The result E(f)(x) is returned to A and decrypted by him,

yielding the result of f(x). Yet, the published approaches can only hide limited classes

of functions.

A di�erent approach is to obfuscate the code, in a way that the functionality is

preserved, but nobody can see how it works. As anyone knows, it is hard to understand

source code. Motivated by this, Hohl suggests in [Hoh97] to mess up source code by

the use of insane variable identi�ers and completely unstructured implementation to

make it even harder to comprehend. Unfortunately, the readability can be improved by

compilation and subsequent de-compilation.

Most of the preceeding research aimed at the construction of an obfuscating compiler

because the availability of an eÆcient method for obfuscating programs is very important

for the use of mobile agents. A �nal point to this research was reached in October 2001

when Barak et. al. (see [BGI01]) proved that the existence of such a compiler is impossible

as long as one requires the resulting program to have a virtual black box property. This

result does not mean that any research in function hiding is obsolete. There is still hope

to �nd function hiding schemes like homomorphic encryption, but they would not o�er

an eÆcient way to construct an obfuscating compiler.

It seems to be hard to secure stand-alone agents. Therefore, we diverge from this and

consider a completely di�erent approach. By using a community of collaborating mobile

agents, it is possible to increase reliability of the community's functionality by mutual

control.



Roth suggests this idea in [Rot99] by launching two agents that are controlling each

others functionality. A drawback of his approach is that as soon as one agent has been

corrupted, the system must halt. Since a corrupted agent could accuse the other of being

corrupted, it should not be possible for an agent to restart the other one. So, the joint

task can only be successfully �nished if no agent gets corrupted on its journey. This might

be the reason that less attention has been payed to this idea.

We develop a model, in which we assume the agents not to communicate with their

originator before they have �nished their job. Otherwise the originator would be forced

to stay online while his agents are working. The advantage of our proposal is, that

it is based on a mathematical model for secure multi-party computation. Several such

models have been published in the last decade. We have decided to use Canetti's recently

proposed security model (see [Can01]) because it is tailored to represent communication

networks like the Internet. Consequently, we do not have to demand all visited servers

to be trustful. It is suÆcient if the majority of our agents is not corrupted. This is

achieved by distributing the computational state and all sensitive data redundantly over

the participating agents.

The following presentation is structured into 3 sections. Section 2 is devoted to a

brief survey of Canetti's model and its use for the agent setting. In the next section,

we introduce a basic model in which the security problems arising by migration are still

unsolved. The extended model in section 4 �lls that gap.

2 Canetti's model and its implications

2.1 Canetti's model

Consider one community of n agents that has been created for a particular task T . By

using a suitable migration control, there will be time periods in which no migration takes

place and all of the agents are hosted by di�erent servers. This setting is the same as that

in secure multi-party computations because in that case several �xed servers participate

in a joint calculation without requesting the servers to trust each other.

As mentioned above, our work is based on Canetti's de�nition of protocol security.

Now, we are going to establish a basis for the presentation of our ideas in sections 3 and

4 by sketching Canetti's model. Main criteria for our decision for it's use was, that it

provides security guarantees for arbitrary (even a priori unknown) concurrent environ-

ments with an asynchronous communication network, that delivers messages publicly,

unauthenticated and without guaranteed message delivery.

Assume n servers jointly computing a functionality F which is realized by an n-party-

protocol �. These servers are capable to participate concurrently in several protocol runs.

Each of those executed programs is denoted as party. Furthermore, there is an adversary

A in Canetti's model that is able to corrupt a limited number k of servers. In this

case, it can read the entire state (including its history) and control the behaviour of

these parties. Additionally, A has the power to read, modify, delay, and even delete

outgoing messages of all n parties. Each entity is modeled as a Turing machine with

two pairs of communication tapes. One for incoming/outgoing messages of the parties,



the other one for local protocol input/output. Another adversarial entity Z, which is

called the environment, represents everything outside the current protocol execution.

Z is responsible of delivering inputs to the parties since their origin is considered as

external. Notice that, both adversarial entities are distinguishable by their knowledge

and control. A knows and controls everything concerning messages between the parties,

but is unaware of the inputs/outputs of the protocol, and for Z it is vice versa. Both are

allowed to communicate with each other freely. The model is called \real-life-model". It

is illustrated in �gure 6 in appendix A.

For the de�nition of a secure protocol, one has to suppose an ideal setting. Obviously,

no protocol execution can achieve more reliability than a protocol using a trusted entity

which gets the inputs from all parties and returns (correct) outputs. A real-life-model

supplemented with an unbounded number of such trusted entities for computing any

functionality F , is called F-hybrid-model. A protocol � in the real-life-model is called

secure, if

1. for any adversary attacking � there is one adversary in the F-hybrid-model and

2. no possible environment is able to decide whether it acts in a protocol execution

within the F-hybrid or the real-life model.

Therefore, the most interesting cases are those in which the \interactive distinguisher"

Z holds back some knowledge from A. This enables Z to check whether the protocol

outputs are correlated to this secret knowledge and, thus, might be able to di�erentiate

the models.

Since our agent communities are supposed to work in the internet, we cannot presume

the existence of a broadcast channel. On account of this, we need Byzantine Agreements

(see [Gol95]) which limit the number k of corrupted parties to n=3 to obtain a protocol

that is secure in the sense of Canetti's de�nition. For our agent setting, this implies

that more than 2n=3 of the hosts must be honest during each time interval in which no

migration takes place.

2.2 Distributed computations

Since we want to secure the execution of arbitrary functions, we have to translate them

into a k-robust protocol. This has to be done because an adversary in our model is limited

to in
uence less than k inputs. Several protocol compilers have been developed. See for

example [GMW87], [BGW88] and [CCD88]. In [GMW87] the resulting protocol is divided

in two steps. At �rst, each party commits to its local input. To be able to detect a party

that deviates from the protocol the other parties possess shares of everyone's randomness.

The second part, the execution, is organised in several rounds. In each of them, every

party is activated at least once to perform computations and to send messages. The

correctness (in the sense of the protocol) of one party's activities are checked by the

others through a zero-knowledge proof. Messages of one round must have been delivered

until the beginning of the next round.

Canetti states in [Can01] that he does not know if [GMW87] is secure in his model. He

proposes the use of [BGW88] which provides an information-theoretic secure synchronous



protocol that stays secure in his setting. But also asynchronous networks can be handled

by using the techniques of [BCG93] and [BKR94]. In [BGW88], the authors use a veri�able

secret sharing scheme (VSS) to enable the community to detect improper or missing

commitments in the �rst step. The actual evaluation of the function is done in the second

phase.

2.3 Canetti Slices

To translate Canetti's model into a model for secure computations in multi-agent systems,

we �rst have to �x all participating entities of the system.

Instead of commissioning one agent to ful�l a particular task, we use a community of

agents, which share their global state of computation redundantly and solve the task in

co-operation. For this purpose, the agents are able to communicate freely and to execute

distributed computations. We consider every agent as one of Canetti's parties and every

host as one of the servers (which are able to host several agents at the same time). There

is only one adversary in Canetti's model. In multi-agent systems, every host has to be

considered as possibly hostile. To manage this, we consider the community of malicious

hosts controlled by a kind of \super-adversary". This is plausible because:

{ In the worst case all malicious hosts co-operate and can be seen as one adversary.

{ Any set of separately working adversaries cannot cause more damage to the entity of

all n agents than one \super-adversary".

The \super-adversary" is consistent with Canetti's adversary and it is even stronger than

any adversary that could exist in a real agent system.

Obviously, we maintain every security guarantee given by Canetti, as long as we only

consider a time period in which no migration takes place. We call such a period Canetti

Slice. During this time interval an agent community consisting of n agents is executed

by n di�erent hosts. What happens when a migration takes place? There again, we have

n agents executed by n di�erent hosts, but one of them is new.

3 A model for a secure mobile agent community

In this section we start by de�ning a basic agent and a basic protocol that demonstrates

how a community with a distributed computational state could be realized. In this pro-

tocol we include a very rudimentary migration process. Any functionality that could be

used to solve a user-de�ned task T can be realised by such a protocol. Several security

risks arising by migration are not handled here, but will be treated in the next section.

3.1 The basic agent

Let Aj be one of the n mobile agents, which have been designed for the ful�lment of a

task T . Like the classical agent, our basic agent can be roughly divided into code and

data. Its code C is the same as that of the other agents of his community, but it would



also be possible to provide it with an unique code. In any case C contains the information

about the size n of the agent community.

The agent's data consists of shared knowledge. Therefore, it is con�dential as long as

an adversary has not enough shares to reconstruct the secret information. Unfortunately,

in the basic model, the adversary is able to collect enough shares over the time. Later on

we solve this problem by resharing methods.

During its travel, Aj enters a series of hosts H0;Hj1; : : : ;Hjm, whereby H0 is the

one, on which he has been initialised. Entering a host Hji, the agent's database consists

of a set sj of shares that have been added as a result of distributed computations by

one of its preceeding hosts. Parts of sj are shares of a list Q that is used to control

the migration process and the entire knowledge about a location list Lc. Unnecessary

or redundant knowledge may be deleted. This implies, that it is not always possible to

detect the supplier of wrong knowledge after the completion of the task.

3.2 The basic protocol

The protocol is divided into an initialisation phase on a trusted host H0 and the execu-

tion/migration phase. Any communication between hosts is assumed to be done through

a secure channel. Every message contains a community id, which enables the receiver to

assign it to one of the agents hosted by him. Messages originated by an agent that is

not a member of the community are ignored. In the protocol this can be checked by a

location list Lc.

In the following, we present the necessary subroutines that have to be executed by a

host on demand of the protocol:

The subroutine deliver

The function deliver has 2 parameters: a list L0 � Lc of receivers and a message m. If

Ak is the �rst element of Q1 and the current host of Ak is in L0, then the message m is

bu�ered. The message m is sent to all con�rmed members of L0.

The subroutine run

run is the most important function in our model. It is used to invocate k-robust n-party

sub-protocols, which are executed by the community. The function's parameters are: the

current location list Lc, a protocol X, and an input r for the protocol X. The input r

is given to the local program that is part of the new protocol instance of X. It contains

randomness and possibly additional information.

The next host is determined by execution of the sub-protocol migrate (see �gure 1).

The protocol could be invoked concurrently. Therefore, we require the termination of the

current migration process before the next one is going to be processed. The �rst element

of Q can be used to check which call of migrate belongs to the current migration process.

1 In this case, Ak is migrating, but his next host is not yet con�rmed.



The functionality of sub-protocol migrate

1. If the input contains "Q" then

If not more than 2n=3 of "Q+" or "Q�" of such calls arrived

store this request and exit.

Else

If #"Q+"> 2n=3 then inform every host to update Lc and to send all messages

that have been bu�ered for the �rst element in Q to the new host.

Remove the �rst element of Q.

Send a termination message to the old host.

If Q 6= fg then continue the protocol for the �rst element of Q.

Else exit.

Else

append the request to Q

If jQj � 1 exit.

2. Distributed computation of Aj 's next host Hj(i+1). It is not allowed to choose

a member of Lc.

3. Broadcast of all resulting shares to all current hosts.

4. Reconstruction of Hj(i+1) by each host.

5. Each host sends its Lc to Hj(i+1).

Fig. 1. Functionality of migrate

Initialisation

1. The originator divides a database D in n redundant shares and distributes them

among the agents. Furthermore, each agent is provided with a code C.
2. H0 computes a list Lc = [H11; : : : ;Hn1] containing the hosts of the �rst Canetti Slice.

3. For all 1 � j � n, the host H0 sends the message (Aj ,"Agree?",H0) to Host Hj1.

4. While there is any j with outstanding positive response:

If Hj1 sends "no", H0 determines a new Hj1, updates Lc and sends

(Aj ,"Agree?",H0) to Hj1.

If Hj1 sends "yes", H0 makes an endorsement about Hj1.

5. H0 sends Lc to all members of Lc.

Migration cycle of Aj on host Hji (i � 1)

1. Hji makes a decision dec 2 f"yes","no"g about the execution of Aj .

2. If Hj(i�1) = H0 then deliver(dec, H0),

else

while not more than 2n=3 location lists Lc are available, store incoming

location lists sent by di�erent servers.

Fix the current location list Lc of all agents by a majority decision.

Then, Hji executes deliver(dec, Lc).
If dec = "no", Hji deletes the agent,

else Hji starts the execution of Aj .

3. During the execution the following events may occur
{ Calls of the function run((r;"Q+"); Lc; migrate) if any host sends a positive re-

sponse concerning the execution of an agent. Calls of run((r;"Q�"); Lc; migrate)

in case of a negative response.



{ Local computations on shares

{ Invocation of a subroutine run(r; L;X) for distributed computations

{ Updates of the set of shares sj
{ Forwarding of messages to Aj

{ Delivery of messages by execution of deliver(L0;m)

{ Aj demands its migration, therefore, Hji calls run((r;"Aj"); Lc; migrate)
{ Receipt of the next host Hj(i+1). Hji exits the event loop.

4. After receiving the next host Hj(i+1), the agent Aj is sent to it with the plea for an

agreement response.

While there is no termination message from c:

If there is a positive answer from Hj(i+1), then Hji calls

run((r;"Q+"); Lc; migrate).

If there is a negative answer from Hj(i+1), then Hji calls

run((r;"Q�"); Lc; migrate).

Hji deletes Aj .

3.3 Discussion

We consider an agent as corrupted when it has been maliciously modi�ed on a host.

Additionally, its shares could be spied out by a host. But we do not consider such an

agent as corrupted because we will use a suitable resharing method in our extended

protocol to make them useless.

Like in the raw Canetti model, we assume a corrupted basic agent to stay in this

condition for the rest of its life. Thus, the probability of having an agent community with

less than n=3 corrupted members decreases over time.

In the basic protocol, we do not require any time constraints for the migration process

or the execution on a host. Therefore, a malicious host can grind the whole community

to a halt by refusing to send an agreement message after receiving an agent with the

request to host it. The lack of a timeout allows a malicious host to retain the agent

forever by never issuing a migration request. This does not change anything in the basic

model because at that moment the agent is already corrupted.

The advantages of distributed computations are the guaranteed con�dentiality of

data and the correct execution of an user-de�ned functionality as long as less than n=3

of the agents are corrupted or spied out. This is a direct result given by [Can01]. For a

hostile environment like the one autonomous agents are living in, this is already a quite

strong guarantee. Nonetheless, for practical reasons we are going to handle the problems

mentioned above by requiring the agents of one community to control each other and, if

necessary to clean an agent that became corrupted. Additionally, we introduce a suitable

resharing method that is performed regularly.

4 An extension

The previously discussed security risks mainly arise from the transition from one Canetti

Slice to another. So, this section is dedicated to enrich our model with techniques to se-



cure the transition by share renewal as well as detecting and cleaning of corrupted agents.

Additionally, we introduce some features like authentication and local computations on

public data. The latter enables the originator to decide whether a particular computa-

tion needs to be performed securely and with non-negligible communication complexity.

Otherwise, they could be performed insecurely but locally and eÆciently.

If code and data are digitally signed, any changes can be detected. Obviously, the

code can be signed by the originator. The public data is always signed by the host that

produced it. But who signs the private data? It should be signed by the community c

because of the following two reasons:

{ If an agent gets lost, the community is able to replace it by copying the code and

reconstructing the private data.

{ No host can join a distributed computation with correct shares and insert signed but

faked shares into the agent's database without being detected later on.

We assume the existence of a public-key-infrastructure with certi�cation authorities. So,

everybody is able to get someone's public key in a reliable way. This implies, that every

host can check if the code and/or data of the agent has been changed without permission.

4.1 The extended agent

Entering the ith host Hji, the agent Aj consists of

{ a list K = [(p0; s0; O; c;H0; tm; t; sigH0
(h(p0)); sigc(h(s0jOjcjH0jtmjt)));

(pjk; sjk; sigHjk
(h(pjk)); sigc(h(sjk)))j1 � k � i� 1]

{ a signature sigO(h(C))

whereby for all 0 � k � i � 1, pjk is the public knowledge and sjk is the set of shares

added by host Hjk (Hj0 = H0). The set s0 additionally contains some system information

like shares of:

{ c's private key

{ counters cAl for each agent Al (needed for the migration process of agent Al)

{ cm that counts the number of migration trials in current migration process

{ the list Q that is the queue for the concurrent migration requests

{ the location list Lc
{ n history lists Lhj
{ Q[1]

From the last three entries the agent possesses enough shares to be able to reconstruct

the data for its own. The initial shares are concatenated with a number tm that limits

the number of migration trials within one migration process, the maximum execution

time t on one host, the originator's name O, the community's identity c and the initial

host H0.



4.2 The extended protocol

In the extended protocol, the time available for the migration process and execution is

controled because every host owns a timer tAj for every agent of c. When a new host is

computed for an agent, every host resets the timer that has been assigned to the agent.

After a successful migration all current timer values are submitted to the new host by his

predecessor. As soon as a particular timer tAj runs out, the host calls the sub-protocol

count to increase a counter cAj . For details about count see �gure 2. When the counter

The functionality of sub-protocol count

1. Increase the distributed counter cAl
by 1

2. If cAl
> 2n=3, then

increase cm by 1

If cm � tm, then

execution of sub-protocol ext migrate

Else

execution of sub-protocol create

Fig. 2. Functionality of count

exceeds 2n=3 and not too many trials have failed, a migration process for agent Aj starts

by calling the sub-protocol ext migrate (see �gure 3). Otherwise the agent is recreated.

Before executing an agent, every host checks the correctness of all signatures. By this,

The functionality of sub-protocol ext migrate

1. If the input contains "Q" then

If not more than 2n=3 of "Q+" or "Q�" calls arrived

store this request and exit.

Else

If #"Q+"> 2n=3 then inform every host to update Lc and to send all messages

that have been bu�ered for the �rst element in Q to the new host.

Send a termination message to the old host.

Call sub-protocol reshare and remove the �rst element of Q.

Else cm := cm + 1;

If cm > tm then call sub-protocol create for Q[1] and exit.

If Q 6= fg then continue the protocol for the �rst element of Q.

Else exit.

Else

append the request to Q

If jQj � 1 then exit.

2.{5. analogously to steps 2{5 of �gure 1

6. Every host sends Lhj = fH0; Hj1; : : : ; Hjig to Hj(i+1)
a.

7. Every host starts a timer tAj
.

a In case of the renewal of an agent, the hosts additionally send their shares of

the new agent to the new location.

Fig. 3. Functionality of ext migrate



the data/code integrity is veri�ed, too. To enable the host to retrieve the relevant public

keys the history list Lhj is submitted to the new host by all other hosts. The history

lists of the other agents are submitted, too. This guarantees the integrity of those lists.

A distributed storage is also possible and more eÆcient, but for sake of simpli�cation not

used here. If the integrity of any of the private data or the code is violated, the host calls

for a sub-protocol create (see �gure 4) that prompts the community to distributedly

compute a new agent and to send it to a new host. This agent has no initial public data.

The functionality of sub-protocol create

1. If the request contains "Ak", then check if the sender of the request is the

current host of Ak. If not, then exit.

2. Fix a code C and the signature sigO(h(C)) by a majority decision

3. Computation of new shares s0; : : : ; si
a

4. Fixing the history Lhj by a majority decision and append the separator �.

5. Execution of ext migrate

a This can be done analogously to [OY91]

Fig. 4. Functionality of create

After receiving a positive agreement response concerning the execution of an agent

from a new host, a host calls run((r;"Q+"); L; ext migrate). In case of a negative re-

sponse, run is called with "Q�". The protocol is executed as soon as more than 2n=3

calls for "Q+" resp. "Q�" from di�erent servers arrived. It instructs the hosts to up-

date their Lc, to send the bu�ered messages to the new host and to renew the shares

by invocating the sub-protocol reshare. If the agent's shares never expire, the \super-

adversary" might be able to collect enough of them to gain full information about the

community's secret. Therefore, it is inevitable to renew the shares. We propose the use of

the technique of [OY91] because it is based on the secure distributed computation scheme

in [BGW88] which we used before. The method makes use of the veri�able secret sharing

scheme which is based on Shamir's secret sharing algorithm presented in [Sha79]. If the

\super-adversary's" abilities are more restricted, one could delay the resharing process

until the �rst agent wants to migrate for the xth time. The number x depends on the

assessment of the network and can be counted by the lists Lhk .

The functionality of sub-protocol reshare

1. Distributed computation of new share sets skl and s0 for each k; l as per

[OY91]

2. Distributed signature of the new sets with the private key of the community

3. Each host deletes the old shares.

Fig. 5. Functionality of reshare



Initialisation

1. The originator divides D in n shares and distributes them among the agents. Fur-

thermore every agent gets some public data p0 and a code C.

2. H0 computes a list Lc = [H11; : : : ;Hn1] containing the hosts of the �rst Canetti Slice.

3. For all 1 � j � n, the host H0 sends the message (Aj ,"Agree?",H0) to Host Hj1 and

starts timers tAj .

4. As long as there is any j with outstanding positive response:

If any timer tAj runs out or Hj1 sends "no", then

compute a new host Hj1 for Aj, send (Aj ,"Agree?",H0) to Hj1 and

restart timer tAj .

else

If Hj1 sends "yes" then tAj is stopped and H0 makes an endorsement about j.

5. H0 sends Lc and for every 1 � j � n, a list Lhj = fH0g containing the previous hosts

of agent Aj to all members of Lc. Additionally, each host gets timers tA1
= : : : =

tAn = 0.

Migration cycle of Aj on host Hji (i � 1)

1. Hji checks sigO(h(C)).

2. Hji makes a decision dec 2 f"yes","no"g about the execution of Aj .

If dec = "yes", all timers tAk are continued.

3. If Hj(i�1) = H0, then deliver(dec, H0).

Else

Incoming location lists Lc and history lists Lhk sent by any server are stored.

If more than 2n=3 lists Lc are available, a majority decision is made to �x Lc.

If Lc exists, Hji executes deliver(dec, Lc).

If dec = "yes",

while for at least one k the list Lhk is not yet �xed do

as soon as for one k, 1 � k � n, more than 2n=3 lists Lhk are available

Lhk is �xed by a majority decision.

Else Hji deletes the agent.

4. Hji checks for 1 � k � i � 1 the signatures of sjk by means of Lhj . The public

knowledge pjk0 is checked by all entries of Lhj after the last separator �.

If the check of any sjk or the code fails then call run((r;"Aj"); Lc; create) and delete

Aj .

else start the execution of Aj .

5. During the execution, the following events may occur

{ Calls of the function run((r;"Q+"); Lc; ext migrate) in case of a positive agree-

ment response from any host. Call of run((r;"Q�"); Lc; ext migrate) in case of

a negative response.

{ Local computations on shares



{ Invocation of a subroutine run(r; Lc;X) for distributed computations

{ Updates of the set of shares sji
{ Forwarding of messages to Aj

{ Delivery of messages by execution of deliver(L0;m)

{ A timer tAk runs out. Then call run((r;"Ak"); Lc; count).

{ Aj demands its migration, therefore, Hji calls run((r;"Aj"); Lc; ext migrate)

{ Receipt of the next host Hj(i+1). Hji exits the event loop.

6. After receiving the next host Hj(i+1), the agent Aj is sent to it with the plea for an

agreement response.

While there is no termination response from c:

If there is a positive answer from Hj(i+1), then Hji calls

run((r;"Q+"); Lc; ext migrate).

If there is a negative answer from Hj(i+1), then Hji calls

run((r;"Q�"); Lc; ext migrate).

If a timer tAk runs out, Hji calls run((r;"Ak"); Lc; count).

Hji deletes Aj and stops all timers. The current values of all timers are transmitted

to Hj(i+1).

4.3 Discussion

Our novel approach improves the security of mobile computations signi�cantly. In par-

ticular, the following security features are achieved:

{ Authentication of the agents.

{ Sensible data can be kept con�dential since they are stored distributedly and any

computation on them is done distributed, too.

{ Violation of code/data integrity can be detected. Code and private data can be re-

stored.

{ For every sensible computation we use n=3-robust protocols which provide us with

guarantees for their private and correct execution.

{ Using timeouts, we guarantee that a malicious host is not able to 
ood the community

with useless requests for a long time. An agent cannot be held forever.

{ Malicious routing is impossible as long as less than 1=3 of the agents are corrupted

at the same time.

{ The community is self-repairing. Therefore, in a real system the preconditions for

Canetti's security model could be met at every time.

To the best of our knowledge, this is the �rst model that achieves security for mobile

computations. We are convinced of its importance for future design of multi-agent systems

even though its communication complexity is high.



References

[BCG93] Michael Ben-Or, Ran Canetti and Oded Goldreich, \Asynchronous Secure Computations",

25th Symposium on Theory of Computing (STOC), pp.52{61, ACM 1993.

[BGI01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan

and Ke Yang, \On the (Im)possibility of Obfuscating Programs", Advances in Cryptology|

Crypto 2001, Lecture Notes in Computer Science, Vol. 2139, pp. 1{18, Springer Verlag, 2001.

[BGW88] Michael Ben-Or, Sha� Goldwasser and Avi Wigderson, \Completeness Theorems for Non-

Cryptographic Fault-Tolerant Distributed Computation", 20th Symposium on Theory of Com-

puting (STOC), ACM, pp. 1{10, 1988.

[BKR94] Michael Ben-Or, Boaz Kelmer and Tall Rabin, \Asynchronous Secure Computations with

Optimal Resilience", 13th PODC, pp. 183{192, 1994.

[Can01] Ran Canetti, \Universally Composable Security: A New Paradigm for Cryptographic Proto-

cols", Cryptology ePrint Archive, Report 2000/067.

[CCD88] David Chaum, Claude Cr�epeau and Ivan Damgard, \MULTYPARTY UNCONDITIONALLY

SECURE PROTOCOLS", Proceedings of the 20th Annual Symp. on the Theory of Computing,

pp. 11{19, ACM, 1988.

[GMW87] Oded Goldreich, Silvio Micali and Avi Wigderson, \How to Play any Mental Game", Proceed-

ings of STOC 87, pp. 218{229, 1987.

[Gol95] Oded Goldreich, \Foundations of Cryptography (Fragments of a book)", Weizmann Institute

of Science, 1995, available at http://theory.lcs.mit.edu/�oded/frag.html.

[Hoh97] Fritz Hohl, \An Approach to Solve the Problem of Malicious Hosts", Fakult�atsbericht, Univer-

sit�at Stuttgart, Fakult�at f�ur Informatik, Germany, Vol. 1997/03, 1997.

[LM99] Sergio Loureiro and Re�k Molva, \Function Hiding based on Error Correcting Codes", Pro-

ceedings of Cryptec '99 { International Workshop on Cryptographic Techniques and Electronic

Commerce, pp. 92{98, July 1999.

[Rot99] Volker Roth, \Mutual protection of co-operating agents", In Jan Vitek, and Christian Jensen,

editors, Secure Internet Programming: Security Issues for Mobile and Distributed Objects, Lec-

ture Notes in Computer Science, Vol. 1603, pp. 2bb75{285, Springer Verlag, 1999.

[Sha79] Adi Shamir, \How to Share a Secret", Communications of the ACM, Vol. 24, No. 11, pp.

612{613, 1979.

[ST98] Tomas Sander and Christian F. Tschudin, \Towards Mobile Cryptography", Proceedings of the

IEEE Symposium on Security and Privacy, 1998.

[OY91] Rafail Ostrovsky and Moti Yung, \How To Withstand Mobile Virus Attacks", Proc. of the

10th Ann. ACM Symp. on Principles of Distributed Computing, pp. 51{59, ACM SIGACT and

ACM SIGOPS, 1991.

[Wei99] Gerhard Weiss, \Multiagent Systems", edited by Gerhard Weiss, MIT Press, 1999.



A Illustration of Canetti's model

The following �gure 6 illustrates the concurrent execution of three protocols �1; �2 and

�3 on N servers. Thereby, �i is an ni-party protocol (1 � i � 3). The adversary A of a

protocol �i is able to read and write on the communication tapes of each participiciant

of this protocol. In the �gure, this is represented by the arrows.

P3

P2

P1

-

--�

-�

6

?

P1

P3 P3

P2

P3

P1

Server 1 Server 2 Server N

Adversary A

Environment Z

Input Output

Fig. 6. The real-life-model with multi-party protocols �1; �2 and �3


