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On functions close to homomorphisms between square
symmetric structures

Karol Baron and Peter Volkmann

Abstract. Let Æ : S � S ! S and � : E �E ! E be binary operations. Suppose

f : S ! E; ' : E � E ! [0;1), and numbers !; " > 0 are given. We provide

conditions for (P) ) (Q) and for (Q) ) (P) to hold, where (P), (Q) have the

following meanings:

(P) There is a homomorphism h : S ! E such that

'(f(x); h(x)) � " (x 2 S):

(Q) There are real numbers Æ; � such that

'(f(x) � f(y); f(x Æ y)) � Æ; '(f(x)2
n

; f(x2
n

)) � !n"+ � (x; y 2 S; n 2 IN):

The 2n-th powers in (Q) concern the operations � and Æ, respectively. For the more

important implication (Q) ) (P) we suppose Æ and � to be square symmetric

operations (i.e., (x Æ y) Æ (x Æ y) = (x Æ x) Æ (y Æ y) for x; y 2 S, and similarly for �

in the set E). { We use our investigations to give a variant of a Forti's result on

stability in the sense of P�olya, Szeg}o, Hyers, Ulam.

1. Introduction. By IN;ZZ; IR we denote the system of natural numbers,

integers, and reals, respectively; IN = f1; 2; 3; : : :g. Let (S; Æ); (E; �) be given
sets with binary operations. A homomorphism h : S ! E is a solution of the

Cauchy functional equation

(1) h(xÆy) = h(x)�h(y) (x; y 2 S):

For x 2 S the powers x2
n

(n 2 IN) are recursively de�ned by

(2) x
2 = xÆx; x2n+1 = (x2

n

)2 (n � 1);

and for u 2 E the powers u2
n

with respect to � have a similar meaning. Then

(1) implies

(3) h(x2
n

) = h(x)2
n

(x 2 S; n 2 IN):
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Now let f : S ! E; ' : E � E ! [0;1) be given functions, let " > 0, and

consider the following requirement:

(P) There is a homomorphism h : S ! E such that

(4) '(f(x); h(x)) � " (x 2 S):

(P) means that in some sense f is close to the homomorphism h. In the next

paragraph we give conditions for the space (E; �) and the function ', in order
to get from (P) the following properties (Q1), (Q2):

(Q1) There is a real number Æ such that

(5) '(f(x) � f(y); f(x Æ y)) � Æ (x; y 2 S):

(Q2) There is a real number � such that

(6) '(f(x)2
n

; f(x2
n

)) � !
n
"+� (x 2 S; n 2 IN):

(Q1) and (Q2) together are sometimes simply called (Q), like in the abstract.

In (6), ! is a given positive number, which later on will be linked to ' by

the formula

(A) '(u2; v2) = !'(u; v) (u; v 2 E):

To get (Q2) from (P) we rather use

(A
�
) '(u2; v2) � !'(u; v) (u; v 2 E):

The inverse inequality

(A
�
) '(u2; v2) � !'(u; v) (u; v 2 E)

is used in the third paragraph to get (P) from (Q): We construct the function

h occuring in (4). To do so, we equip E with a complete metric � � ', and

we give conditions for obtaining h as the usual limit, which is known from

P�olya and Szeg}o for (S; Æ) = (IN;+); (E; �) = (IR;+) (cf. [10], Exercise I 99)

and from Hyers [6] for Banach spaces S;E; cf. also Forti's survey paper [4].

To obtain the homomorphism property (1) for this function h, we suppose

the operations Æ in S and � in E to be square symmetric (cf. [9]), i.e.

(V) (xÆy)Æ(xÆy) = (xÆx)Æ(yÆy) (x; y 2 S);
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(W) (u�v)�(u�v) = (u�u)�(v�v) (u; v 2 E):

Of course, these formulas also can be written as (xÆy)2 = x
2Æy2; (u�v)2 = u

2�
v
2. From Forti's paper [2] it is already clear that square symmetric operations

provide a natural setting for studying stability of Cauchy functional equations

(cf. also [1] by Borelli and Forti; the �rst paper using square symmetry in

this context is due to R�atz [11]; for more recent results cf. P�ales [8]).

In the fourth paragraph we discuss uniqueness of the homomorphism h in

(P), and we summarize the hypotheses for the equivalence between (P) and

(Q).

The �fth paragraph is devoted to stability. Concerning conditions (P), (Q1),

(A) we are less general than Forti [2]: He allows variable " = "(x); Æ = Æ(x; y),

and instead of (A) he uses '(u2; v2) = k('(u; v)), where k : [0;1)! [0;1) is

an appropriate function. On the other hand, our function ' is not necessarily

a metric on E, since '(v; u) = '(u; v) (u; v 2 E) will not be required.

Examples in the concluding sixth paragraph show the advantage of this.

A special case of our considerations is a square symmetric structure (S; Æ)
(i.e., (V) holds) and (E; �) = (E;+) with an arbitrary Banach space E,

where �(u; v) = '(u; v) = ku � vk (u; v 2 E) and ! = 2. Then it is known

from [16] (and it is easy to show) that (P), (Q) are equivalent; this result

had been inspired by [5].

2. The implications (P) ) (Q1) and (P) ) (Q2). For the function

' : E � E ! [0;1) we deal with the following conditions:

(S) There is a constant a � 0 such that

'(v; u) � a'(u; v) (u; v 2 E):

(T) There are constants b; c � 0 such that

'(u; w) � b'(u; v) + c'(v; w) (u; v; w 2 E):

(T1) There is a constant c � 0 such that

'(u; w) � '(u; v) + c'(v; w) (u; v; w 2 E):
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(T
11
) '(u; w) � '(u; v)+'(v; w) (u; v; w 2 E):

Of course, (T11) ) (T1) ) (T). The triangle inequality (T11) will be used

later, when discussing stability. At present we need a certain boundedness

condition:

(B) There is a real number � such that for t; u; v; w 2 E we have

'(t; v) � "; '(u; w) � ") '(t � u; v � w) � �:

Proposition 1. If (S), (T), (B) are satis�ed, then (P) ) (Q1); if (S), (T1),

(A�) hold, then (P) ) (Q2).

Proof. To get (Q1) from (P), consider x; y 2 S and use (S), (T), (B), (P),

and (1) as follows:

'(f(x) � f(y); f(x Æ y))
� b'(f(x) � f(y); h(x) � h(y)) + c'(h(x Æ y); f(x Æ y))
� b� + ca'(f(x Æ y); h(x Æ y)) � b� + ca":

This proves (Q1) with Æ = b� + ca". To get (Q2) from (P) we use (3). Then

(S), (T1), (A�), (P) imply

'(f(x)2
n

; f(x2
n

)) � '(f(x)2
n

; h(x)2
n

) + c'(h(x2
n

); f(x2
n

))

� !
n
'(f(x); h(x)) + ca'(f(x2

n

); h(x2
n

)) � !
n
"+ ca";

i.e., (Q2) holds with � = ca".

3. The implication (Q) ) (P). Here we use the following property of �
in E:

(U) To every u 2 E there is a unique v 2 E such that v2 = u.

We write v = u
1=2 = u

2�1, and we de�ne recursively

u
2�n�1 = (u2

�n

)2
�1

(u 2 E; n 2 IN):

Together with u
20 = u

1 = u and with the analogue of (2) for the operation �
in E, the powers u2

m

are de�ned for all m 2 ZZ, and the rule (u2
m

)2
n

= u
2m+n

for u 2 E and m;n 2 ZZ can easily be veri�ed.

As mentioned in the introduction, � will be a metric on E; we suppose:
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(R) (E; �) is a complete metric space, and � � '.

All further topological (and metric) notions in E are understood with respect

to �. In particular the function h : S ! E in (P) will be given by the limit

(7) h(x) = lim
n!1

f(x2
n

)2
�n

(x 2 S):

Proposition 2. Suppose (Q2), (R), (U), (A�), and

(E) ! > 1:

Then (7) de�nes a function h : S ! E.

Proof.We �x x 2 S. Because of (U) the expressions f(x2
n

)2
�n

have a meaning,

and because of (R) it is suÆcient to show that they form a Cauchy sequence:

We put

Æm;m+n = �(f(x2
m

)2
�m

; f(x2
m+n

)2
�m�n

) (m;n 2 IN):

By � � ' and (A�) we get

Æm;m+n � 1

!
m+n

'(f(x2
m

)2
n

; f((x2
m

)2
n

))

((2) implies x2
m+n

= (x2
m

)2
n

). Now (Q2), (E) yield

Æm;m+n � 1

!
m+n

(!n
"+ �) � "+ j�j

!
m

;

and the last term tends to zero as m!1.

The conditions (V), (W) will occur in the next proposition. From (V), (2)

the formula (x Æ y)2n = x
2n Æ y2n (x; y 2 S; n 2 IN) easily follows. From (W)

we get a similar formula for the operation � in E, and if also (U) holds, then

we have more generally (u�v)2m = u
2m �v2m (u; v 2 E; m 2 ZZ). Two further

conditions will be used:

(C) � : E � E ! E is continuous.

(D) ' : E � E ! [0;1) is continuous with respect to the second variable.

In the next proposition we use again the de�nition of h : S ! E from

Proposition 2.

Proposition 3. Assume (Q2), (R), (U), (A�), (E) to hold and de�ne h :

S ! E by (7). If (D) is satis�ed, then (4) holds. If (V), (W), (Q1), (C) are

satis�ed, then h : S ! E is a homomorphism.
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Proof. Let (D) be satis�ed: Dividing (6) by !
n and using (A�) yields

'(f(x); f(x2
n

)2
�n

) � "+
�

!
n
:

By n!1 we get (4).

Now let (V), (W), (Q1), (C) be satis�ed: For x; y 2 S and n 2 IN we get from

(5) the inequality

'(f(x2
n

) � f(y2n); f((x Æ y)2n)) � Æ:

We divide by !
n and we use (A�) to obtain

'(f(x2
n

)2
�n � f(y2n)2�n ; f((x Æ y)2n)2�n) � Æ

!
n
:

Because of � � ' we can replace ' by �. Then, when using (C), n ! 1
yields h(x) � h(y) = h(x Æ y).

Observe that by the last reasoning we get h(x) � h(x) = h(x Æ x), if (V), (W)

are not required (cf. also Proposition 1 in Forti's paper [3]). But for this it is

suÆcient to have (5) only for y = x, and this point of view has been adopted

in [18].

Observe furthermore that at the end of Proposition 3 we can replace (V) by

a more general condition stemming from J�ozef Tabor [15] (cf. also [18]).

As an immediate consequence of Propositions 2, 3 we have:

Proposition 4. Suppose (R), (U), (V), (W), (A�), (C), (D), (E) to hold.

Then (Q) ) (P).

4. Uniqueness of the homomorphism h in (P) and the equivalence

(P) , (Q).

Proposition 5. Assume (S), (T), (A�), (E), and:

(F) For u; v 2 E; '(u; v) = 0 implies u = v.

Then the homomorphism h : S ! E in (P) is unique.

Proof. For homomorphisms h1; h2 : S ! E satisfying

'(f(x); h1(x)) � "; '(f(x); h2(x)) � " (x 2 S)
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we have

'(h1(x); h2(x)) � b'(h1(x); f(x)) + c'(f(x); h2(x))

� ba'(f(x); h1(x)) + c" � (ba + c)" =: 
;

hence, for x 2 S and n 2 IN,

'(h1(x
2n); h2(x

2n)) � 
;

'(h1(x)
2n

; h2(x)
2n) � 
;

!
n
'(h1(x); h2(x)) � 
;

'(h1(x); h2(x)) � 
=!
n ! 0 (n!1):

Therefore, '(h1(x); h2(x)) = 0 (x 2 S), and because of (F) we obtain h2 = h1.

Since (F) is a consequence of (R), we get from Propositions 1, 4, 5 the result:

Theorem 1. Assume (R), (S), (T1), (U), (V), (W), (A), (B), (C), (D), (E) to

hold. Then (P) , (Q), and the homomorphism h : S ! E in (P) is uniquely

determined; it is given by the limit (7).

5. Stability. (S; Æ) and (E; �) being given, we understand stability of equa-

tion (1) by means of the function ' : E � E ! [0;1) in the following way:

De�nition. The homomorphism equation (1) is stable, if for each " > 0 there

exists a Æ > 0 such that for functions f : S ! E satisfying (5) also (P) holds.

In view of Proposition 4 it is now of interest to get for each " > 0 some

Æ > 0 such that the inequality (5) in (Q1) implies (Q2): In such a case one

has stability, if also the hypotheses of Proposition 4 are satis�ed.

Proposition 6. Assume (A�), (E), and the triangle inequality (T11) to hold,

and suppose 0 < Æ � "(! � 1). Then (5) implies (Q2).

Proof. We use (5) only for y = x, i.e.,

(8) '(f(x)2; f(x2)) � Æ (x 2 S):

For x 2 S and n 2 IN, (T11) implies

'(f(x)2
n

; f(x2
n

)) � '(f(x)2
n

; f(x2)2
n�1

) +

+'(f(x2)2
n�1

; f(x4)2
n�2

) + � � �+ '(f(x2
n�1

)2; f(x2
n

));
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and by (A�), (8) we get

'(f(x)2
n

; f(x2
n

)) � !
n�1

Æ + !
n�2

Æ + � � �+ Æ =

=
!
n � 1

! � 1
Æ = !

n
Æ

! � 1
� Æ

! � 1
� !

n
"� Æ

! � 1
;

i.e., (6) holds with � = �Æ=(! � 1).

As a consequence of Propositions 4, 6 we get:

Theorem 2. Suppose (R), (T11), (U), (V), (W), (A), (C), (D), (E) are ful�l-

led. Then equation (1) is stable: If " > 0 is arbitrary and Æ = "(! � 1), then

(5) implies (P).

Remark. In the proof of Proposition 6 the inequality (5) was only needed

for y = x. Therefore Theorem 2 can be strengthened in the following way:

Suppose the hypotheses (R), : : : , (E) of that theorem to hold. Let " > 0

be given, suppose (5) to hold with some Æ � 0 (this Æ not necessarily being

linked to "), and suppose

'(f(x)2; f(x2)) � "(! � 1) (x 2 S):

Then (P) is true.

In the simple case (S; Æ) = (E; �) = (IR;+) (and '(x; y) = jx � yj) this
remark means that for f : IR! IR having the properties

jf(x) + f(y)� f(x+ y)j � Æ; jf(2x)� 2f(x)j � " (x; y 2 IR);

there is an additive h : IR! IR such that jf(x)� h(x)j � " (x 2 IR).

6. Examples. 1. Let E be a Banach space. As square symmetric operation

in this space we take the addition (and we write +, not �), as metric we take

(9) �(u; v) = �ku� vk (u; v 2 E);

where � > 0 will be speci�ed in a moment. Let V be a closed, convex,

bounded subset of E, having zero in its interior, and let � : E ! [0;1) be

the Minkowski functional of this set (cf., e.g., Rudin [13]), in particular we

have

(10) V = fu j u 2 E; �(u) � 1g:
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We take

(11) '(u; v) = �(u�v) (u; v 2 E);

and we choose � in (9) such that � � '. Then E;'; � meet all the conditions

(R), (S), (T11), (U), (W), (A), (B), (C), (D), (E) in Theorems 1, 2 and we

have ! = 2 for this case. In condition (B) the dependence of � upon " is

given by � = 2".

Moreover, let (S; Æ) be an arbitrary square symmetric structure (i.e., also (V)

holds true); by Theorem 2 we get stability with Æ = ", and because of (10),

(11) this means for " = 1 the following: If f : S ! E satis�es

(12) f(x)+f(y)�f(xÆy) 2 V (x; y 2 S);

then there is h : S ! E such that

(13) h(xÆy) = h(x)+h(y); f(x)�h(x) 2 V (x; y 2 S):

This result is already known for the more general case of bounded subsets V

of E, which are ideally convex in the sense of Lif�sic [7]; the proof in [17] is the

same as the former proof by Jacek Tabor [14] for commutative semigroups

(S; Æ).

2. Suppose n 2 IN; n � 2, and 0 < p < 1. We take E = IRn with its addition

+ as square symmetric operation, and we equip IRn with the F -norm

(14) kuk =
nX

�=1

ju�jp (u = (u1; : : : ; un) 2 IRn):

Then �(u; v) = ku � vk (u; v 2 IRn) de�nes a translation invariant metric,

by which IRn becomes a complete metric linear space (cf. Rolewicz [12]). We

take ' = �, and again E;'; � meet all conditions (R), (S), (T11), (U), (W),

(A), (B), (C), (D), (E) in Theorems 1, 2; this time we have ! = 2p in (A),

hence ! < 2.

In particular we get Æ < " in Theorem 2, and actually Æ = " is not possible:

To see this, suppose the contrary and de�ne

(15) V = fu j u 2 IRn
; kuk � 1g:

As in the previous example, if (S; Æ) is a square symmetric structure, then

to each function f : S ! E satisfying (12), there is an h : S ! E such that
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(13) holds. If we take (S; Æ) = (IR;+), then a theorem of Jacek Tabor [14]

forces V to be a convex subset of IRn (this space now being considered as a

Banach space). But because of 0 < p < 1 (and n � 2) in (14), the set (15) is

not convex.

3. In the foregoing example ' is a metric (' = �), and such cases are covered

by the papers of Forti [2] and of Borelli and Forti [1]. Now we take E = IR2,

again with + as operation, and we de�ne

�(u) = �(u1; u2) =

� p
2u1 +

pju2j (u1 � 0)p�u1 +
p
ju2j (u1 � 0)

(u = (u1; u2) 2 IR2):

Then '(u; v) = �(u � v) (u; v 2 IR2) is not symmetric, hence not a metric.

Finally we put �(u; v) = ku� vk (u; v 2 IR2) where k � k is given by (14) with

n = 2; p = 1

2
. Then E;'; � meet all the conditions (R), (S), (T11), (U), (W),

(A), (B), (C), (D), (E) in Theorems 1, 2; here we have ! =
p
2.

Let (S; Æ) be an arbitrary square symmetric structure, and let us look at

Theorem 2: If

W = fu j u 2 IR2
; �(u) � 1g;

" > 0, and if f : S ! E satis�es

f(x) + f(y)� f(x Æ y) 2 ÆW

(where Æ = "(
p
2� 1)2 = "(3� 2

p
2)), then there is h : S ! E such that

(16) h(xÆy) = h(x)+h(y); f(x)�h(x) 2 "W (x; y 2 S):

The square in Æ = "(
p
2 � 1)2 comes from the fact that for r � 0 we have

�(u) � r if and only if u 2 r
2
W .

As Jacek Tabor has pointed out (oral communication), such type of stability

result can be reduced to our �rst example: Take E = IR2 and choose Æ1 2
(0; ") according to

V := Æ1 � convW � "W

(where conv W denotes the convex hull ofW ). Then, if a function f : S ! E

satis�es

f(x) + f(y)� f(x Æ y) 2 Æ1W;

we get (12), hence also (13) for some h : S ! E, and therefore we have (16).

10



4. Let us conclude by an in�nite-dimensional version of the foregoing example:

We take the complete metric linear space

E = fu j u = (u1; u2; : : : ); kuk =
1X
n=1

p
junj <1g

with + as operation, and for u = (u1; u2; : : : ) 2 E we de�ne

�(u) =

� k(2u1; u2; u3; u4; : : : )k (u1 � 0)

kuk (u1 � 0):

Again '(u; v) = �(u � v) (u; v 2 E) is not symmetric, hence not a metric,

and again we take �(u; v) = ku� vk (u; v 2 E).

Then E;'; � meet all the conditions (R), (S), (T11), (U), (W), (A), (B), (C),

(D), (E) in Theorems 1, 2, where ! =
p
2.
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