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Abstract

In many parallel applications, network latency causes
a dramatic loss in processor utilization. This paper ex-
amines software pipelining as a technique for network
latency hiding. It quanti�es the potential improve-
ments with detailed, instruction-level simulations.

The benchmarks used are the Livermore Loop ker-
nels and BLAS Level 1. These were parallelized and
run on the instruction-level RISC simulator DLX, ex-
tended with both a blocking and a pipelined network.
Our results show that prefetch in a pipelined network
improves performance by a factor of 2 to 9, provided
the network has su�cient bandwidth to accept at least
10 requests per processor.

1 Introduction

As microprocessors get faster and the gap between
computation and communication speeds widens, net-
work latency becomes the dominant factor of the ex-
ecution time of �ne-grained parallel programs. Laten-
cies lower than 10�s are rare among commercial par-
allel architectures[HS94]. Given a 100 MHz clock, a
10�s latency corresponds to 1000 clock cycles. Thus,
instead of a single communication operation one could
perform 1000 arithmetic instructions. This situation
becomes worse by a factor of up to 10 once soft-
ware overhead is factored in. If, however, the paral-
lel machine is capable of performing communication
and computation concurrently, then the loss in ef-
�ciency can be reduced by overlapping communica-
tion and computation. The basic concept of hiding
latency can be used with a great variety of policies
[GHG+91, CB92, RL92, CKP91, GGV90].

Little is known about the e�ects of latency hid-
ing applied to communication networks in massively
parallel computers with distributed memory. This pa-

per reports on simulation experiments that quantify
the e�ects of latency hiding on real programs, namely
parallel versions of the Livermore Loops, BLAS Level
1 and a few others.

Basic latency hiding techniques are discussed in
Section 2, while Section 3 introduces the pipelined net-
work communication analyzed in this paper. Section 4
contains the description of our simulation framework
and the benchmark set used. Simulation results are
presented in Section 5.

2 Latency Hiding

In general there are two ways for implementing la-
tency hiding: (a) thread switching and (b) code re-

organization, the latter together with a non-blocking
prefetch mechanism. These two basic methods apply
to both hiding primary memory latency as well as hid-
ing communication latency. Data access over a net-
work is simply another level in the memory hierar-
chy with an extremely large access time. There is a
large body of related work discussing various tech-
niques, such as prefetching cache lines, non-blocking
loads, scheduling techniques, and speculative execu-
tions on uniprocessors or small-scale multiprocessors
[CB92, RL92, MLG92, CKP91, GGV90].

The basic idea of latency hiding by thread switch-

ing is to de-activate a thread stalled by communication
and to switch to another thread. When the communi-
cation operation has �nished, the system can continue
processing the original thread. The cause for a stall can
be an explicit communication operation in a distribut-
ed memory architecture or a cache miss (i.e., and im-
plicit communication) in a cache-based shared mem-
ory architecture. For a detailed discussion of thread
switching see [GHG+91].

The concept of code reorganization for hiding com-
munication latency is based on splitting each commu-
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nication operation into a request, i.e. a non-blocking
prefetch, followed by an access operation. The prefetch
operation is moved backwards in the code to the ex-
tent allowed by data dependencies and consistency re-
quirements. The execution of the code between the
prefetch and corresponding access operation overlaps
the communication operation. It is also possible to
overlap several communication operations by issuing
multiple requests in succession.

Latency hiding by code reorganization combines
well with virtualization loops. Virtualization loops are
used frequently in data parallel programs as an ef-
�cient substitute for thread switching. Given n pro-
cesses and p processors (where n > p), we de�ne
the virtualization ratio v = dn=pe. This ratio is al-
so called parallel slackness [Val90a]. In data parallel
programs, v processes are e�ciently simulated by a
compiler-generated virtualization loop per processor
[PHL93]. For hiding communication latency, a com-
piler can use knowledge about virtualization and data
layout to generate prefetch code for non-local data ref-
erences.

In the following, we concentrate on latency hiding
by code reorganization in virtualization loops. We ex-
pect similar results to hold for fast thread switching.

3 Software Pipelining

The technique of combining virtualization loops with
code reorganization enables a compiler to hide a sig-
ni�cant portion of communication latency for remote
read operations1. This section shows how a compil-
er would use a non-blocking prefetch operation and
which hardware support is needed. The di�erence to
traditional pipelining techniques on vector computers
is that we assume no vector registers.

3.1 Software Controlled Data Pipelin-

ing

In the following example, a permutation of vector B
is copied to vector A. All elements A[i] are assumed
local to processor i. For sake of clarity we assume prob-
lem size n to be a multiple of the number of physical
processors p.

1The latency introduced by remote write operations cannot

be overlapped in general. If processor i issues a write operation

and processor j issues a read operation to the same data ele-

ment, some kind of synchronization between these two accesses

is needed.

FORALL i : [0 .. n-1] DO

A[i] := B[q[i]];

END

On a shared address space architecture one would code
the example as a parallel virtualization loop:

v := n/p;

FORALL j : [0 .. p-1] DO

FOR k = j*v TO (j+1)*v - 1 DO

a1 := calc_address(B[q[k]]);

A[k] := remote_read(a1);

END;

END

We assume that the majority of data accesses caused
by the permutation vector q are nonlocal. Further-
more, to simplify the code, we also assume that the
remote read function recognizes local addresses and
performs local reads for them. In many parallel archi-
tectures, the remote read function is atomic, which
causes the processor to stall until the communication
network delivers the requested data. This means that
the execution of the whole loop is slowed down by ap-
proximately v = n=p communication stalls.

With appropriate prefetch instructions issued as
early as possible the code becomes:

v := n/p;

FORALL j : [0 .. p-1] DO

FOR k = j*v TO (j+1)*v - 1 DO

a1 := calc_address(B[q[k]]);

prefetch(a1);

END;

FOR k = j*v TO (j+1)*v - 1 DO

a1 := calc_address(B[q[k]]);

A[k] := access(a1);

END;

END

The �rst FOR loop fetches all necessary elements into a
prefetch bu�er. The bu�er is used by the access func-
tion to read the corresponding values in the second FOR

loop. Each prefetch operation vi of the �rst FOR loop
corresponds to an access operation vj of the second
FOR loop. The result is a data pipeline between the
two FOR loops. If the prefetch pattern equals the ac-
cess pattern, we obtain a perfect pipeline (�fo). Given
su�cient bandwidth of the network and enough bu�er
space, the time T that may be overlapped with com-
munication can be calculated from the elapsed time
between the �rst prefetch and the �rst access oper-
ation:

T = (v � 1) � (tcalc address+ tinit prefetch+ tloop)

+tcalc address+ tloop (1)
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The maximumoverlap Tmax is achieved when the data
access patterns of both loops are the same.

3.2 Network Models

req + xfer a

req + xfer b

? ?

fetch a
fetch b

req a xfer a

req b xfer b

(b) Pipelined

(a) Blocking

Figure 1: Timings of data access for network models

Before we can calculate the performance improvement
that can be gained through prefetching we have to
take a closer look at two possible network models (see
Figure 1).

� Blocking: As soon as a processor issues a com-
munication request, it stalls until the data is de-
livered. There is no per processor overlap of com-
putation and communication or among multiple
communication requests issued by the same pro-
cessor. Thus, the waiting time of each request is
the network latency L.

� Pipelined(m,k): A request can be issued every
k cycles with the limitation that each node may
place at most m simultaneous requests into the
network. Limiting the number of requests is nec-
essary in most networks to avoid overload and
severe slowdown. In a practical implementation,
a prefetch loop would place all requests into a
prefetch bu�er, from which a communication con-
troller releases them into the network so that no
more than m per node are underway. This mod-
el provides not only overlap of communication
and computation, but alsom-way overlap of com-
munication operations. The theoretically possible
performance improvement is

PP =
tcomputation + tcommunication

max(tcomputation;
tcommunication

m
)

For communication intensive applications (i.e.
tcommunication � tcomputation) where all commu-
nication latency can be hidden, PP evaluates to
m. If tcommunication=m = tcomputation, the formu-
la reaches its maximum PPmax

= m+ 1.

Note that the pipelined model includes what is usual-
ly called the asynchronous message passing model. By
choosing m = 1 and k = L, we model the situation
that each processor can overlap computation with a
single communication request. However, multiple re-
quests by the same processor cannot be overlapped.
The maximum theoretically possible speedup in this
case, according to the above formula, is 2.

3.3 Hardware Considerations

Hardware support for the prefetch mechanism
sketched above depends on the memory architecture.
In case of a cache-based shared memory, the prefetch
bu�er can be implemented within the cache by in-
troducing presence bits. A prefetch operation clears
the presence bit of the corresponding cache entry. The
bit is set when the prefetch completes. The access
operation stalls only as long as the presence bit is
cleared. This method implements the necessary inter-
lock mechanism.

In a distributed memory architecture, the prefetch
bu�er can be implemented as a tagged register �le or
a tagged cache within the network interface of each
processor. The interlock mechanism can be the same
as above.

The size of the prefetch bu�er may be insu�cient
for the amount of prefetch an application demands. In
this case, somewhat more complicated virtualization
loops for both prefetch and execution are necessary.

The performance of a pipelined(m,k) network is
mainly a property of bandwidth and throughput. m
simultaneous requests per node requires robustness
against network contention. Also, the network should
keep the m requests in order (i.e. communication op-
eration j should be completed before communication
operation j + 1) for the calculated timings of equa-
tion 1 to hold. Proper ordering is not necessary for
correct execution, but achieves optimal overlap.

4 Simulation Framework and

Benchmarks

The architectural model of our simulator is a MIMD
machine with a common address space but not neces-
sarily shared memory (XPRAM [Val90b]).

We have extended the instruction-level RISC simu-
lator DLX [HP90] for our experiments. The simulator
itself consists of a CPU simulator and a memory sys-
tem which is capable of handling data access to remote
data elements. It takes compiler generated assembler
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sources in extended DLX assembly language and re-
ports CPU and memory related statistics.

We augmented the instruction-level CPU simulator
for the DLX instruction set with a prefetch instruc-
tion. The interlock mechanism for prefetching was im-
plemented as described above by tagging. The simu-
lator uses time stamps to emulate the presence bits.
Each time a datum is referenced in memory by a load
instruction, the simulator checks if the data reference
is valid. This is done by comparing the actual system
time (in cycles) with the time stamp associated with
each memory word. The system stall time is then cal-
culated by the di�erence of the time stamp and the ac-
tual system time. A prefetch instruction simply adds
the network latency to the actual system time and
stores the result in the time stamp of the associated
memory address.

Both a blocking and a pipelined network model are
implemented within our simulator. Blocking means
that the CPU is stalled on a remote data access and
waits until the network returns the referenced value.
In the pipelined case, the possible stalling delay when
accessing data is calculated by the di�erence between
its time stamp and the actual system time. Parame-
ters for the pipelined(m,k) model are (a) the expect-
ed network latency L and (b) the minimum time be-
tween two consecutive communication operations k.
The missing parameter m (number of simultaneous
requests in the network) is set to m = L=k. Thus, the
request times for the k operations is equally spaced
over the latency L.

We use scienti�c problems, namely a selection of the
Livermore Loop kernels, BLAS Level 1, and some oth-
ers, as the basis for our experiments. The Livermore
Loop kernels and BLAS are a popular benchmark in
the area of vector supercomputers. We rewrote most
of the Livermore Loops and the BLAS routines in a
data-parallel fashion2. Based on this work, it was easy
to extract the necessary node level programs written
in C. The dlxcc3 compiler generates assembly code
for our simulator. The prefetching code was inserted
by hand into the C source code according to the ex-
ample given in section 3.1. The prefetch instruction
itself was inserted using the asm facility of dlxcc.
To sketch the impact of latency hiding on our bench-
mark set, Table 1 shows a characterization of each
benchmark in terms of used communication patterns.

2A description of how to parallelize the Livermore Loops can

be found in [Feo88]. Livermore Kernels 17 and 20 were omitted,

because they can not be parallelized and Livermore Loop 16 is

too di�cult to simulate.
3dlxcc is derived from the gcc compiler to produce DLX

assembly output.

benchmark
communication

pattern

ll1 hydro fragment array o�set

ll2 ICCG excerpt reduction

ll3 inner product reduction

ll4 banded linear equation reduction

ll5 tri-diagonal elimination reduction

ll6 general linear recurrence
equations

broadcast

ll7 equation of state fragment array o�set

ll8 ADI integration array o�set

ll9 integrate predictors none

ll10 di�erence predictors none

ll11 �rst sum reduction

ll12 �rst di�erence array o�set

ll13 2-D particle in cell indirect addressing

ll14 1-D particle in cell indirect addressing,

reduction

ll15 casual Fortran array o�set

ll18 2-D explicit hydro-

dynamics fragment

array o�set,

reduction

ll19 general linear recurrence

equations

reduction

ll21 matrix*matrix product broadcast,

reduction

ll22 Planckian distribution none

ll23 2-D implicit hydro-

dynamics fragment

array o�set,

reduction

ll24 �rst minimum reduction

jacobi 2-D grid

red-black SOR 2-D grid

bl1.1 srotg none

bl1.2 srot array o�set

bl1.3 sswap array o�set

bl1.4 sscal array o�set

bl1.5 scopy array o�set

bl1.6 saxpy array o�set

bl1.7 sdot array o�set,

reduction

bl1.8 snrm2 reduction

bl1.9 sasum reduction

bl1.10 isamax reduction

Table 1: Classi�cation of benchmark suite

� none: No communication needed.

� array o�set: Communication between di�erent
array elements (i.e. A[i] and A[i+o�set]). Here it
is possible to prefetch all remote elements at once.

� 2-D grid: Typical north-west-south-east commu-
nication pattern. With an optimal data layout,
only the border of the local j�j rectangular block
consists of remote data elements, which can be
prefetched.
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� reduction: Typical reduction tree, used to
compute a vector-sum, min(max) of a vector,
pre/post�x sums, etc. Prefetching in this kind of
application is di�cult, because the results calcu-
lated in level j of the reduction tree are needed
in level j+ 1 as input operands. The opportunity
for latency hiding was improved by increasing the
fan-in in each stage.

� indirect addressing: Most of the data is ac-
cessed in a A[q(i)] fashion, where q(i) is an a
priori unknown permutation. Thus, it is impos-
sible to exploit any knowledge about data layout
for statically optimizing communication patterns.
Nevertheless, aggressive prefetching of all data el-
ements was used.

5 Results

We chose the following parameters for our experi-
ments. To get close to the reality of massively parallel
machines we set the number p of physical processors
to 1024. However, most of our benchmarks are not
in
uenced by the number of physical processors, be-
cause the communication patterns { array o�set, 2-D
grid and indirect addressing (see Table 1) { do not
depend on machine size. Only those benchmarks with
reduction operations are in
uenced by machine size,
because the height of the reduction tree and therefore
the number of communication operations evaluates to
h = logf (p), where f is the fan-in. Communication
latency L was set to 1000 CPU-cycles, according to
the estimate in Section 1. For the pipelined(m,k) net-
work model we choose m = 10 and k = 100, so that
m � k = 10 � 100 = 1000 = L. Additionally, results are
presented for latency L = 100 (m = 10; k = 10) and
L = 10; 000 (m = 10; k = 1000). For the BLAS Level
1 routines, we use di�erent o�sets for the X and Y

arrays (i.e. incx = 2 and incy = 4). Otherwise there
would be no communication at all. We de�ne utiliza-

tion of the parallel computer for a given program as
the ratio of measured runtime versus runtime on an
ideal PRAM without any communication latency.
The Jacobi iteration (benchmark 22) calculates for
each point in a 2-dimensional grid the arithmetic mean
value of its four neighboring elements. An optimal da-
ta layout is achieved by dividing the original N � N

grid into rectangular blocks of size j�j (N2 = j2 �p).
This decomposition reduces the amount of commu-
nication operations per processing element to 4 � j,
which matches the number of border elements of the
local j � j rectangular block.
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Figure 2: Utilization of Jacobi iteration

According to this data layout, Figure 2 shows the
utilization of the Jacobi iteration while varying paral-
lel slackness (virtualization). Over a wide range, the
utilization under blocking communication does not ex-
ceed 20%. A utilization of 50% is not reached until a
virtualization of 5000. Prefetching reaches 50% utiliza-
tion with a virtualization of only 25. With a parallel
slackness of only 750, utilization with prefetch is above
90%.
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Figure 3: Utilization of Livermore Loop 3

Results for the inner product (ll3) are shown in Fig-
ure 3. As before, the latency hiding mechanism shows
advantages over normal (blocking) communication. A
slackness of 250 in contrast to 500 in the blocking case
is needed to get to 50% utilization. To reach 90% uti-
lization one has to increase virtualization to 2000 and
5000, respectively.

Figure 4 shows the utilization for the tri-diagonal
elimination (ll5). Neither 50% nor 90% utilization is
reached because a reduction operation for each of the
local elements is needed. Thus, a parallel slackness of
k needs k�logp communication operations. Neverthe-
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Figure 4: Utilization of Livermore Loop 5

less, the latency hiding mechanism with 27% utiliza-
tion shows an enormous advantage over normal (block-
ing) communication with only 4% utilization.

Another possibility to visualize the advantages of
latency hiding techniques is to calculate the perfor-
mance improvement. This is done by dividing the
execution times of pipelined and blocking execution
(pi = tpipelined=tblocking). Note that with the number
of simultaneous outstanding requests set to m = 10
the maximumpossible performance improvement { as
calculated in section 3.2 { is 11. The results for the Ja-
cobi iteration, Livermore Loop 3 and Livermore Loop
5 are graphed in Figures 5 to 7.

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

1 10 100 1000 10000

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t

Virtualization

Fragment: jacobi, Latency: 1000 cycles

Prefetch

Figure 5: Performance improvement of Jacobi

The Jacobi iteration has a performance improve-
ment larger than a factor of 3 over a wide range of
virtualization ratios. Peak values of 5 to 6 are reached
between virtualization ratios of 10 to 200. As shown
in Figures 2 and 3, the utilization of blocking com-
munication tends to 100% with increasing virtualiza-
tion. This e�ect explains why performance improve-
ment decreases, especially when looking at the per-
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Figure 6: Performance improvement of ll3
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Figure 7: Performance improvement of ll5

formance improvement of Livermore Loop 3. The per-
formance improvement of the tri-diagonal elimination
(ll5) shows quite a di�erent behavior. With increasing
virtualization the performance improvement tends to
the theoretical maximum of 11. In this case, the net-
work capability of overlapping m = 10 simultaneous
requests is fully used.

The three completely di�erent graphs can be char-
acterized by the communication complexity of the ap-
propriate benchmark:

� O(communication) = const:: The communica-
tion complexity is �xed regardless of the virtual-
ization degree. With increasing virtualization, the
computation=communication ratio also increas-
es. This leads to a better utilization, but also to
a decreasing performance improvement. Typical
examples of this behavior are single broadcast /
reduction operations (i.e., ll3).

� O(communication) < O(computation): Commu-
nication complexity is rising slower than the com-
putation complexity. With increasing virtualiza-
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tion, the computation=communication ratio still
increases, but less than in the previous case.
Prefetching in the pipelined network model leads
to a better utilization at a smaller virtualization
degree compared to a blocking network. This re-
sults in an increasing performance improvement
up to a certain threshold. Afterwards { with bet-
ter utilization { performance improvement de-
creases. Typical examples of this behavior are ar-
ray o�set and grid communication patterns (i.e.,
jacobi).

� O(communication) � O(computation): Commu-
nication complexity is higher than computation
complexity. Thus, with increasing virtualization
the computation=communication ratio is �xed or
decreases! Is is hard to reach an acceptable level of
utilization, but the performance improvement of
a pipelined over a blocking network is signi�cant,
because the network capability of overlapping m
simultaneous requests can be fully used. Typical
examples of this behavior are indirect addressing,
cyclic data-layout (BLAS) and multiple broadcast
/ reduction communication patterns (i.e., ll5).

One question of interest is: What is the necessary
degree of virtualization to reach 50% or 90% utiliza-
tion? Table 2 gives the answer for all of our bench-
marks, including the examples discussed above.

Through latency hiding, nearly all benchmarks
reach 50% as well as 90% utilization with much lower
virtualization degree. In general, the problem size can
be at least 2 to 10 times smaller to reach the same
utilization. That makes it possible to solve even small
problems with acceptable utilization. Codefragments
ll9, ll10, ll22, srotg and sscal do not need any com-
munication at all, so we see maximum utilization re-
gardless of problem size. Livermore Loops 13 and 14
use only indirect addressing to access non-local data.
This makes it impossible to use any knowledge about
data layout to optimize communication patterns, so
an aggressive prefetching method has to be used (i.e.,
prefetch all elements which might be remote). With
blocking communication, a high virtualization degree
is needed to reach 50% utilization (ll13). Benchmark
ll14 is even worse: Only 9% utilization with virtual-
ization 10000 is reached. With latency hiding, a much
smaller degree of virtualization is su�cient to get 50%.
As consequence of the aggressive prefetching, the max-
imum utilization of ll13 is about 68% (ll14: 55%).
The missing 32% (45%) are due to overhead of the la-
tency hiding mechanism. The di�erence in utilization
between blocking and pipelined communication leads

benchmark
50% utilization 90% utilization

blocking/prefetch blocking/prefetch

ll 1 250 20 5000 40

ll 2 600 150 7500 2000

ll 3 500 250 5000 2000

ll 4 500 250 5000 2000

ll 5 (4%)y (27%)y (4%)y (27%)y

ll 6 1500 600 6000 3000

ll 7 50 6 500 12

ll 8 20 3 200 30

ll 9 1 1 1 1

ll 10 1 1 1 1

ll 11 250 150 2000 1500

ll 12 60 30 750 75

ll 13 4000 400 > 10000 (68%)y

ll 14 (9%)y 1000 (9%)y (55%)y

ll 15 15 5 150 30

ll 18 100 50 1000 500

ll 19 200 75 2500 750

ll 21 (9%)y (17%)y (9%)y (17%)y

ll 22 1 1 1 1

ll 23 (4%)y (29%)y (4%)y (29%)y

ll 24 2500 1000 > 10000 10000

jacobi 5000 25 > 10000 500

red-black-sor 3000 20 > 10000 750

bl1.1 1 1 1 1

bl1.2 (8%)y 10 (8%)y (54%)y

bl1.3 (12%)y 6 (12%)y (57%)y

bl1.4 1 1 1 1

bl1.5 (6%)y 50 (6%)y (53%)y

bl1.6 (6%)y 25 (6%)y (56%)y

bl1.7 (5%)y 750 (5%)y (53%)y

bl1.8 150 80 2500 900

bl1.8 150 90 2500 1000

bl1.10 150 90 2500 1000
y values indicate maximum utilization achieved

Table 2: Necessary virtualization (1000 cycles latency)

to a performance improvement of factor 9.4 and 7.2,
respectively, in these two cases. Another behavior is
shown in codefragments ll5, ll23, srot, sswap, scopy
and saxpy. With increasing virtualization the number
of communication operations also increases and no ac-
ceptable utilization is reached. The utilization varies
between 4% and 12% for blocking communication and
between 27% and 57% for pipelined communication.
Still, the codefragments show an excellent improve-
ment factor of 9 and above with latency hiding.

Comparing the simulation results (Table 2) and the
classi�cation of our benchmark set (Table 1), it be-
comes evident that benchmarks with similar communi-
cations patterns show also roughly the same behavior
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in our simulator. Interesting is the combination of two
or more communication patterns in one benchmark.
An example is ll18, where an array o�set is combined
with reduction operations. According to the results in
Table 2 the reduction operation seems to dominate the
array o�set and in fact this holds. With an increasing
virtualization degree all latency caused by the array
o�set can be hidden, so the remaining latency is due
to reduction operations.

Another question is how these results are in
uenced
by communication latency. Table 4 (see appendix)
shows the results of our benchmark set with latency
set to 100 CPU-cycles (m = 10; k = 10). Table 5 does
the same with latency 10,000 (m = 10; k = 1000).
The basic conclusions drawn from the results above
still hold. Of course, the necessary virtualization ratio
must increase with communication latency to achieve
a given utilization. With a close look at Table 5 (laten-
cy 10,000) it becomes evident that it is nearly impos-
sible to reach an acceptable utilization with blocking
communication on high latency networks. A commu-
nication delay of 10000 CPU-cycles is not as unlikely
as one might think: A CPU operating at 200 MHz cou-
pled with a 50�s network latency can execute 10000
instructions during one communication.

Table 3 summarizes our results by showing the
maximum performance improvement achieved. All
benchmarks, besides those with reduction operations,
show performance improvements ranging from 2 to
9. Increasing network latency makes the advantage of
prefetching even more pronounced. It is also interest-
ing to check how close to the theoretically possible per-
formance improvement { as calculated in section 3.2
{ one can get. According to the parameters chosen,
the maximum possible performance improvement is
11, because the number of simultaneous requests in
the network was set to m = 10 in all simulations.

6 Conclusion

This article quanti�es the performance losses caused
by the communication network in massively paral-
lel, distributed memory computers. High-latency net-
works without overlap of communication requests may
never reach acceptable utilization or require high vir-
tualization ratios. This fact may be a major cause for
the frequently observed, poor utilization of parallel su-
percomputers.

Software controlled prefetching of data can improve
utilization by a factor of 2 to 9, provided the commu-
nication network can accept a load of 10 simultaneous
requests per processor. A simple analysis of the com-

munication pattern, the computation as well as the
communication complexity of a codefragment is often
enought to predict the performance improvement of a
pipelined over a blocking network.

We are currently extending our benchmark suite
with the BLAS Level 2 routines and other examples.
We are also studying techniques for incorporating la-
tency hiding into optimizing compilers. Analyzing the
tradeo�s possible with ultra-fast thread switching is
another research topic.

The general goal of this work is to make the per-
formance of parallel systems predictable for the ap-
plications programmer. This involves improvements
in communication networks, compiler technology, and
performance prediction models.
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A Results for Latency 100 and

Latency 10000

benchmark
50% utilization 90% utilization

blocking/prefetch blocking/prefetch

ll 1 20 1 250 30

ll 2 30 1 500 75

ll 3 15 1 500 200

ll 4 20 1 500 200

ll 5 (21%) (72%) (21%) (72%)

ll 6 200 150 1000 750

ll 7 3 1 40 4

ll 8 2 1 15 2

ll 9 1 1 1 1

ll 10 1 1 1 1

ll 11 15 10 250 200

ll 12 1 1 50 6

ll 13 400 1 4000 (68%)

ll 14 5000 3 > 10000 (83%)

ll 15 1 1 15 2

ll 18 8 3 100 50

ll 19 7 1 200 50

ll 21 10000 1 > 10000 (67%)

ll 22 1 1 1 1

ll 23 (23%) (71%) (23%) (71%)

ll 24 100 1 2500 750

jacobi 25 1 7000 250

red-black-sor 1 1 2500 50

bl1.1 1 1 1 1

bl1.2 (45%)y 1 (45%)y (50%)y

bl1.3 1 1 (56%)y (52%)y

bl1.4 1 1 1 1

bl1.5 (35%)y 1 (35%)y (52%)y

bl1.6 (38%)y 1 (38%)y (55%)y

bl1.7 (37%)y 1 (37%)y (54%)y

bl1.8 2 1 200 45

bl1.9 3 1 200 45

bl1.10 2 1 200 45
y values indicate maximum utilization achieved

Table 4: Necessary virtualization (100 cycles latency)

benchmark
50% utilization 90% utilization

blocking/prefetch blocking/prefetch

ll 1 2500 200 > 10000 400

ll 2 9000 3000 > 10000 > 10000

ll 3 5000 4000 > 10000 > 10000

ll 4 7500 4000 > 10000 > 10000

ll 5 (0%) (2%) (0%) (2%)

ll 6 7000 4000 > 10000 > 10000

ll 7 500 75 5000 150

ll 8 200 40 2500 400

ll 9 1 1 1 1

ll 10 1 1 1 1

ll 11 3000 2000 > 10000 > 10000

ll 12 700 300 7000 600

ll 13 (23%) 4000 (23%) (68%)

ll 14 (1%) (9%) (1%) (9%)

ll 15 150 40 2500 400

ll 18 1000 500 10000 5000

ll 19 3000 800 > 10000 10000

ll 21 (1%) (2%) (1%) (2%)

ll 22 1 1 1 1

ll 23 (0%) (3%) (0%) (3%)

ll 24 > 10000 10000 > 10000 > 10000

jacobi > 10000 2500 > 10000 > 10000

red-black-sor > 10000 2000 > 10000 > 10000

bl1.1 1 1 1 1

bl1.2 (0%)y (8%)y (0%)y (8%)y

bl1.3 (1%)y (12%)y (1%)y (12%)y

bl1.4 1 1 1 1

bl1.5 (0%)y (5%)y (0%)y (5%)y

bl1.6 (0%)y (6%)y (0%)y (6%)y

bl1.7 (0%)y (5%)y (0%)y (5%)y

bl1.8 2500 1000 > 10000 10000

bl1.9 2500 1500 > 10000 10000

bl1.10 2500 1000 > 10000 10000
y values indicate maximum utilization achieved

Table 5: Necessary virtualization (10000 cycles latency)
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