
Analysis of

Random Polling Dynamic Load Balancing

Peter Sanders

Lehrstuhl Informatik f�ur Ingenieure und Naturwissenschaftler

University of Karlsruhe

D-76128 Karlsruhe (Germany)

E-mail: sanders@ira.uka.de

April 28, 1994

Abstract

Dynamic load balancing is crucial for the performance of many par-

allel algorithms. Random Polling, a simple randomized algorithm, has

proved to be very e�cient in practice for applications like parallel depth

�rst search. This paper derives tight bounds for the scalability of Random

Polling which are for the �rst time able to explain its superior performance

analytically. In some cases, Random Polling even turns out to be optimal.

The analysis is based on a fairly general model of the application and the

parallel machine. Some of the proof-techniques used might also turn out

be useful for the analysis of other parallel algorithms. Finally, a simple

initialization scheme is presented which vastly improves the algorithm's

performance during the startup phase.

1 Introduction

Load Balancing is one of the central issues in parallel computing. Since for many

applications it is almost impossible to predict how much computation a given

subproblem involves, a dynamic load balancing (DLB) strategy is necessary which

is able to keep the processors busy without incurring an undue overhead.

DLB comes in many guises. This paper is concerned with a very simple yet

important model of the problem domain. The only thing the load balancer knows

about a piece of work is, whether it is exhausted or not. Furthermore, a piece of

work can be split into two parts. But nothing is known about the relative size of

the two parts or their interactions.

One application domain for which this is a useful model is depth �rst tree

search. Search trees are often very irregular and the size of a subtree is hard to

1

predict, but it is easy to split the search stack into two parts. Also, interactions

between the subtrees often follow the tree structure (e. g. reporting results) or

they are hard to exploit by a load balancer anyway (e. g. broadcasting of the

current best solution or accessing distributed hash tables). Note that depth �rst

tree traversal is a central aspect of many AI and OR-applications and of parallel

functional and logical programming languages.

This paper focuses on Random Polling (RP), a simple yet e�ective randomized

DLB scheme. Every processing element (PE) works at exactly one piece of work.

A PE whose piece of work is exhausted, polls randomly determined PEs until it

�nds one which is busy. The busy PE splits its piece of work and transmits one

part to the idle PE.

After introducing the notation necessary for a formal treatment in Section 2,

Section 3 gives references to related work. Section 4 presents some general results

about probabilistic algorithm analysis which are quite interesting by themselves.

Then Section 5 gives the analysis of RP. Section 6 describes an initialization

scheme which is able to remove some ine�ciencies of basic RP during the startup

phase.

2 De�nitions

The analysis considers a MIMD computer consisting of n identical PEs numbered

0 through n� 1 which interact by exchanging messages through a network of di-

ameter d(n). The size w of a problem is measured in units of sequential execution

time. A task (piece of work) can be represented by a message of size s(w). When

a task has been split h(w) times it is assumed to have been reduced to some

atomic size g(w).

The performance of a DLB-scheme is assessed by analyzing a problem with-

out interactions between subtasks where DLB is the only source of paralleliza-

tion overhead. Natural performance measures are the parallel execution time

Tpar(n;w) or the e�ciency

E =
w

nTpar(n;w)
(1)

But the complexity of discussing bivariate functions can be avoided by �xing

E and solving equation 1 for w yielding the isoe�ciency function w(n). This

function is a convenient measure for the degree of scalability of an algorithm. For

a more detailed discussion of various scalability measures see [Kum90].

Since RP is a randomized algorithm, a meaningful analysis has to be a proba-

bilistic one. Two di�erent notions of probabilistic behavior turn out to be useful.

One is the traditional notion of average case behavior:

De�nition 1 A random variable X(n) (where n is a parameter) is in O(f(n))

2

on the average i�

EX(n) =
X
i

iP [X(n) = i] = O(f(n))

Another notion is behavior with high probability1 which is somewhat more com-

plicated but often quite useful:

De�nition 2 A random variable X(n) is in O(f(n)) with high probability or

X(n) = ~O (f(n)) for short i�

9c > 0; n0 > 0 : 8� � 1; n � n0 : P [X(n) > c�f(n)] � n��

Section 4 makes a connection between these two notions. But in order to do

that, two other terms from probability theory are needed:

De�nition 3 ~x� is �-quantile of a random variable X i�

P [X < ~x�] � � < P [X � ~x�]

De�nition 4 A conditional expected value of a random variable X is

E[Xjc] :=
X
i

iP [Xjc]

3 Related Work

Due to its simplicity and e�ectiveness, Random Polling (the name is adopted

from [KA91]) has probably been invented independently by several researchers

(e.g. [FM87]). There is so much practical evidence for its e�ectiveness in a

multitude of settings (see also [FMM91, PFK93, San94b, San94a]) that this paper

concentrates on analysis.

In [KZ93] it is proved that for d(n) = O(1) and s(w); g(w) = O(1) RP has

an isoe�ciency function in O(n2 log n) with high probability. Much tighter is the

result in [KA91]: If s(w); g(w) = O(1) and h(w) = O(logw), the isoe�ciency

function of RP is in O(nd(n) log2 n) on the average. This already indicates a

quite good scalability. But it falls short of explaining why RP is in practice more

e�cient than a deterministic algorithm introduced in the same paper which has

an isoe�ciency in �(nd(n) log n).

Another randomized DLB algorithm is based on dynamic tree-embeddings in-

to butter
y networks or hypercubes [L+89, Ran94]. For s(w); g(w) = O(1) it has

an isoe�ciency function in O(nh(n)) with high probability which is asymptotical-

ly optimal. However, the algorithm has no notion of granularity control resulting

in high memory requirements and a possibly quite small upper bound on the

achievable e�ciency due to communication overhead. Another interesting result

from [L+89] is that no deterministic tree embedding with the same performance

can exist.
1Various slightly di�erent introductions of this notion can be found in the literature (e. g.

[Raj92, Lei92]); this paper tries to use the strictest reasonable interpretation.

3

4 Some Basic Results

There are some fairly general results which greatly simplify the analysis of RP.

Theorem 1 formulates a powerful property of behavior with high probability: A

bound on the maximum of polynomially many random variables is given by the

maximum of the individual bounds for the random variables. Theorem 2 cites a

frequently used result about coin
ipping experiments and Theorem 3 makes a

connection between behavior with high probability and average case behavior.

Theorem 1 Let X1(n) = ~O (f1(n)),: : : , Xm(n) = ~O (fm(n)) be random variables

where m is at most polynomial in n. Then

m
max
i=1

Xi(n) = ~O

�
m

max
i=1

fi(n)

�

Proof: Let k > 0 be a constant such that m � nk for su�ciently large n. Let

c = (k+1)maxmi=1 ci where ci is the constant of proportionality used to show that

Xi(n) = ~O (fi(n)). We need to show that

P [maxmi=1Xi(n) > c�maxmi=1 fi(n)] � n�� for any � � 1 for su�ciently large n.

P

�
m

max
i=1

Xi(n) > c�
m

max
i=1

fi(n)

�
= P

2
4 m[
j=1

�
Xj(n) > c�

m
max
i=1

fi(n)

�35

�
mX
j=1

P

�
Xj(n) > c�

m
max
i=1

fi(n)

�

� m
m

max
j=1

P

�
Xj(n) > c�

m
max
i=1

fi(n)

�

� m
m

max
j=1

P [Xj(n) > c�fj(n)]

� m
m

max
j=1

P [Xj(n) > cj(k + 1)�fj(n)]

� m
m

max
j=1

P [Xj(n) > cj(k + �) fj(n)]

� mn�(k+�)

� nkn�(�+k)

= n��

2

This result has a special case of particular importance to parallel algorithms:

The run time of a parallel algorithms is determined by the slowest PE. If the

runtime of individual PEs is known with high probability Theorem 1 makes it

easy to estimate the overall run time.

Theorem 2 Let the random variable X represent the number of heads after n

independent
ips of a loaded coin where the probability for a head is p. Then

P [X � (1� �)np] � e��
2np=3 for 0 < � < 1

4

[Che52, Raj92].

The above theorems are often useful for the analysis of parallel algorithms but

they are not directly applicable if average case behavior is the measure of interest.

However, it is often possible to infer the average case behavior once the behavior

with high probability is known. One way to make this transition is based on the

following lemma:

Lemma 1 If ~x� is �-quantile of a random variable X and it is known that

E[XjX � ~x�] � ~x� +EX then EX � ~x�
�
.

Proof: Splitting the sum de�ning EX at ~x� yields:

EX =
X
i

iP [X = i] =
X
i<~x�

iP [X = i] +
X
i�~x�

iP [X = i] (2)

The left part of the sum can be estimated using the de�nition of a quantile:X
i<~x�

iP [X = i] �
X
i<~x�

~x�P [X = i] = ~x�
X
i<~x�

P [X = i] � ~x��

Also by de�nition of a quantile

P [X = ijX � ~x�] =
P [X = i \X � ~x�]

P [X � ~x�]
� P [X = i]

1 � �

for i � ~x� and, P [X = ijX � ~x�] = 0 for i < ~x�. The right part of the sum in

quation 2 can be massaged to exploit this knowledge:

X
i�~x�

iP [X = i] = (1� �)
X
i�~x�

i
P [X = i]

1 � �

� (1� �)
X
i�~x�

iP [X = ijX � ~x�]

= (1� �)
X
i

iP [X = ijX � ~x�]

� (1� �)(~x� +EX)

Putting the pieces together gives a relation which can be solved for EX.

EX � ~x�� + (1� �)(~x� +EX) = ~x� + (1� �)EX

EX � ~x�

�

2

Now it is simple to prove the following theorem:

Theorem 3 If X(n) = O(f(n)) with high probability and

E[X(n)jX(n) � ~x(n)1� 1
n
] � ~x(n)1� 1

n
+ EX(n) then X(n) = O(f(n)) on the

average.

5

Proof: Setting � = 1 in De�nition 2 yields that there is a c such that for

su�ciently large n

P [X(n) > cf(n)] � 1

n
or

P [X(n) � cf(n)] � 1� 1

n
� P

h
X(n) < ~x(n)1� 1

n

i
by de�nition of a quantile. This implies

~x(n)1� 1
n
� cf(n) = O(f(n))

Now Lemma 1 can be applied:

EX(n) =
O(f(n))

1� 1
n

= O(f(n))

2

5 Analysis

Algorithm analysis is often facing a dilemma between undue simpli�cation of a

problem and an informal treatment lacking mathematical rigor. This is particu-

larly true for parallel algorithms where there is not even an agreed upon model

of computation. This paper uses a rather informal style in order to make it pos-

sible to discuss complications like routing strategies or bus contention without

introducing too much notational overhead. However, the probabilistic part is

somewhat more rigorous in order to avoid the many pitfalls of too vague argu-

mentation in the context of probability theory.

Figure 1 shows pseudocode for the algorithm underlying the analysis. All PEs

execute the same program with the exception that PE 0 initially gets all the work.

Idle PEs poll randomly selected PEs for work and reject requests they receive.

In practice, an idle PE will not send a request to itself but for the purpose of

the analysis this case is not excluded. Busy PEs cycle between doing work and

servicing at most one request. Note that a busy PE will not block if no requests

are imminent nor can it be swamped by requests without being able to do \useful"

work. In addition, some protocol for termination detection is necessary which is

not considered here since it is not a bottleneck if implemented properly.

5.1 Framework of the Analysis

The starting point is the de�nition of e�ciency:

E =
w

nTpar

6

initialize PE 0 with the entire work

WHILE NOT �nished DO for all PEs in parallel (asynchronously)

IF task is empty THEN

REPEAT

send a request R to a randomly determined PE

wait for a reply and reject any incoming requests

UNTIL R is not rejected

reinitialize task from incoming message

WHILE task is not empty DO

IF there is an incoming request THEN

split task

asynchronously send one part to the initiator of the request

do some work on task

Figure 1: Pseudocode for RP

For any
 2 [0; 1=2) we can set

Tpar = T<
 + T�

where T<
 is the length of all time intervals during which less than
n PEs are

idle. If we neglect the time to test for a request2 and assume that
n active PEs

are busy servicing requests of the idle PEs3 we get

T<
 <
w

n(1� 2
)

since in this time the active PEs can process the entire task.

During T�
 there will be at least

n

Treq
work requests per time unit if Treq is the

time needed for a work request. Let the random variable K(n; h(w)) denote the

number of work requests necessary such that every task has been split at least

h(w) times. Then,

T�
 �
K(n; h(w))Treq

n
+ g(w)

Since after time
K(n;h(w))Treq

n
every task is reduced to an atomic size. Now the

2If incorporated into the analysis, it would turn out that the test implies an upper bound
on the e�ciency. However, the test can often be implemented very e�ciently and intervals
between tests can be made arbitrarily large without a�ecting the asymptotic scalability. The
maximal e�ciency can therefore be made as close to 1 as desired.

3If routing is entirely done by software, this �gure becomes 2
n since for each message, up to
two PEs at a time can be delayed having to transfer the message (assuming a store-and-forward
routing policy).

7

e�ciency can be estimated.

E � w

n
�

w
n(1�2
)

+
K(n;h(w))Treq

n
+ g(w)

� =
w

w
(1�2
)

+
K(n;h(w))Treq

+ ng(w)

(3)

5.2 The Order of K(n; h(w))

Under the reasonable assumption that there is at least a constant number of

atomic work units for each PE (i. e. w = g(w)
(n)) the asymptotic behavior of

K(n; h(w)) can be derived.

Lemma 2 Let the random variable Kt(n; h(w)) denote the number of requests

necessary to hit a particular task t h(w) times; Then Kt(n; h(w)) = ~O (nh(w)) if

w = g(w)
(n).

Proof: We need to �nd a c such that for all � � 1 and su�ciently large n

P := P [Kt(n; h(w)) > c�nh(w)] � n��

or

P [after c�nh(w) requests: (# of requests for t) < h(w)] � n��

Since the requests are independent and task t is hit with the uniform probability
1
n
, Theorem 2 is applicable. By writing h(w) as

�
1�

�
1 � 1

c�

��
(c�nh(w)) 1

n
we

get

P � exp�
2
4 1� 1

c�

!2
c�h(w)

3

3
5

Since w = g(w)
(n), h(w) =
(log n) because even a perfect splitting function

would always leave a piece of work not in O(g(w)) after less than logarithmically

many splits. So, there is a constant d > 0 such that h(w) � d ln n for su�ciently

large n. Using � � 1 we can further estimate:

P � exp�
"�
1 � 1

c

�2 c�d lnn
3

#

= n��(1�
1
c)

2 cd
3

� n�� if c � 1 +
3 +
p
12d + 9

2d

2

There are only O(n) tasks, and therefore Theorem 1 allows us to conclude

that the asymptotic behavior of K(n; h(w)) with high probability is the same as

the behavior of Kt(n; h(w)):

Corollary 1 K(n; h(w)) = O(nh(w)) with high probability if w = g(w)
(n)

8

Issuing requests can only decrease the expected number of additional requests

necessary to hit all tasks at least h(w) times, i. e.

E[K(n; h(w))jK(n; h(w)) > ~x�] � ~x�+EK(n; h(w)) for all �. Theorem 3 can be

used to get:

Corollary 2 K(n; h(w)) = O(nh(w)) on the average if w = g(w)
(n).

5.3 Estimating h(w)

Splitting a task of size v produces two tasks with sizes �v and (1 � �)v where

0 < � � 1=2. If it is guaranteed that � is bounded from below by a positive

constant then it is fairly straightforward to show that h(w) = O(logw) [KA91],

making the analysis of RP less involved.

However, this assumption is not always warranted. In depth �rst tree search

for example, a very popular splitting function splits the search tree by distributing

the successors of the root-node between the two subtasks. If the degree of tree

nodes is bounded by a constant, h(w) is proportional to the height of the tree.

If the tree has a su�ciently uniform shape, the height is indeed logarithmic in

w. But, there are search algorithms where both the height of the tree and w are

polynomial in some input measure [Pea84] and therefore �gures like h(w) � pw
are quite conceivable.

Although there are more sophisticated splitting functions for search trees

[KR87], it is an open question in which cases these functions can guarantee that

h(w) = O(logw) (perhaps in some probabilistic sense). But even if this works,

the analysis for general h(w) may help to decide whether the additional expense

for a more sophisticated splitting function is worth the e�ort.

Another example for trees of very irregular shape are computation trees in-

duced by functional programs. According to [ABF93], it is quite di�cult to come

up with a useful splitting function for those trees. The same problem is to be

expected for logical programming languages.

5.4 The Request Delay Treq

Since there cannot be more messages than idle PEs, there are at most
nmessages

at a time. The messages have independent randomly determined destinations

and have size O(s(w)). Analyzing this routing problem is a nontrivial problem

by itself. In analogy to [KA91] we will therefore assume that at least packets of

constant size can be routed in O(d(n)) time for meshes, hypercubes and various

multi-stage networks. Then

Treq = O(d(n)s(w)) (4)

Other networks are limited by their bisection bandwidth. For example, on busses

or trees it can only be said that Treq = O(ns(w)). The subsequent analysis

9

works with Treq = O(d(n)s(w)). The result for other cases is easy to obtain by

substituting the appropriate values.

Note that it may be an overestimation to assume that some fraction of the

messages has size s(w). As few as
(n) work transfers may su�ce to balance the

load. On the other hand, a total of O(nh(w)) requests is to be expected. Also,

for some settings, the actual length of a message decreases with the actual size

of a task whereas we always count the upper bound for a given initial problem

size. In addition, the delivery of long messages can be accelerated by pipelining

(i. e. chopping the message into pieces of constant size). In this case, delivery

is possible in time O(d(n) + s(w)) when network tra�c is low. For Hypercubes,

there are randomized algorithms for a similar routing problem which work in time

O(maxfs(w); log ng) even if all messages have full size [ALMN91].

5.5 The Isoe�ciency of RP

In the preceding sections all factors in
uencing the performance of RP have been

estimated. Now it is possible to put the individual pieces together. Using Relation

3, Corollary 1 and 2 and Equation 4 we can conclude that there is a constant c

such that for su�ciently large n and w:

E � w
w

(1�2
)
+ cnh(w)d(n)s(w)

+ ng(w)

(5)

both with high probability and on the average if w = g(w)
(n).

An immediate observation is that for g(w) > ch(w)s(w)d(n) the scalability

is dominated by the atomic grainsize. In this case it may not be necessary to

bother about routing delays, quality of splitting function or message sizes.

If h(w)s(w) =
(w) or g(w) =
(w) we have limn!1 E = 0 according to our

estimate. So, for large h(w)s(w) or g(w) RP may not be scalable at all. Indeed,

for h(w) =
(w) or g(w) =
(w) the problem contains a sequential component

of size
(w) and no scalable parallel algorithm is possible.

For maxfh(w)s(w); g(w)g not in
(w) we can choose
 < 1�E
2

and get

limw!1 E = 1 i. e. for su�ciently large w any desired e�ciency can be achieved.

The degree of scalability for RP can be assessed by �xing E and solving for the

isoe�ciency function w(n). This is now done for two characteristic cases:

Isoe�ciency for h(w)s(w) = O(loga w), a � 1, g(w) = O(logb w), b � 0

We are only interested in polynomial w(n) and therefore h(w)s(w) = O(loga n)

and g(w) = O(logb n), i. e. there is a constant c0 such that for su�ciently large n

E � w
w

(1�2
)
+

cc0nd(n) loga n

+ nc0logbn

10

Solving for w gives:

w � cc0n(d(n) loga n + logb n))
1
E
� 1

1�2

i. e.

w(n) = O(nmaxfd(n) loga n; logb ng) (6)

with high probability and on the average. The case h(w) = O(logw) and

s(w); g(w) = O(1) is proven in [KA91] to be in O(nd(n) log2 n) on the average.

So the new result is tighter by a factor of log n.

Isoe�ciency for h(w)s(w) = O(w�), 0 < � < 1, g(w) = O(w�), 0 � � < 1

Using a similar discussion as for Equation 6 we get:

w(n) = O(maxf(nd(n)) 1
1�� ; n

1
1�� g) (7)

with high probability and on the average.

And for the mixed case h(w) = O(logw), s(w) = O(w�) with � � 0:

w(n) = O(maxf(nd(n) log n) 1
1�� ; n

1
1�� g) (8)

with high probability and on the average.

5.6 Lower Bounds

There are four things which have to be done by any scalable parallel program

which uses the problem model from Section 2:

1. Some processor has to process a task of size
(w=n).

2. Some processor has to process a task of size
(g(w)).

3. If a signi�cant share of the PEs shall be utilized, on any reasonable network4,

some task has to travel a distance in
(d(n)) incurring a transmission time

of
(d(n) + s(w)).

4. Under the assumption that the incore representation of a task is not asymp-

totically shorter than its representation as a message, a time in
(s(w) log n)

has to be invested to split some task
(log n) times. Else, a task would exist

which is too large to be processed in time O(w=n).

4As an example of an \unreasonable" network consider a network of n=2 PEs which are fully
connected plus a \tail" of another n=2 PEs arranged as a linear array.

11

As a consequence, the parallel execution time Tpar is in

(maxfw=n; d(n)+s(w); s(w) log n; g(w)g) =
(maxfw=n; d(n); s(w) log n; g(w)g)
and therefore there is a constant c such that for su�ciently large n and w:

E � w

ncmaxfw=n; d(n); s(w) log n; g(w)g

In analogy to the discussion in Section 5.5 this relation can be used to derive

lower bounds for the isoe�ciency. For s(w) =
(logaw) and g(w) =
(logbw)

with a; b � 0

w(n) =
(nmaxfd(n); loga n; logb ng) (9)

and for s(w) =
(w�), g(w) =
(w�) with 0 � � < 1, 0 � � < 1

w(n) =
(maxfnd(n); (n log n) 1
1�� ; n

1
1�� g) (10)

By comparing equation 9 and 10 with equations 6 and 8 respectively we see

that for g(w) =
(h(w)s(w)d(n)) or d(n) = O(1) and h(w) = O(logw) the

scalability of RP is asymptotically optimal. The assumption d(n) = O(1) is

certainly unrealistic for large n. However, on many contemporary machines,

message startup times dominate the time for delivery for any practical value of

n and a constant diameter may be a good approximation.

How Tight is the Analysis?

A discussion similar to the derivation of a general lower bound can be used to

derive a lower bound for the e�ciency of RP itself. In order to make all tasks

su�ciently small, there has to be some chain of splits of length
(log n). The

crucial di�erence is that in RP for each split there has to be a corresponding re-

quest. Assuming that some fraction5 of the corresponding requests has to traverse

a distance of
(d(n)),
(d(n) log n) is a lower bound for the parallel execution

time. The corresponding bound for the isoe�ciency is:

w(n) =
(nd(n) log n) (11)

So, for the case of a good splitting function (h(w) = O(logw)) and bounded

message lengths (s(w) = O(1)) the analysis from Section 5.5 (Equation 6) turns

out to be tight.

6 Initialization Methods

When the basic RP algorithm is started, only one PE is active and it takes

some time until PE utilization is satisfactory. During this startup phase, many

5On most network types this will be true with high probability.

12

work requests fail. This problem can be avoided by using a more sophisticated

initialization method, �rst described in [EDH80], and called selective initialization

in [Hen93]: First, the entire task is broadcast to all PEs. Then, the task is split

repeatedly and the bits of the PE index are used to decide which subtask is

retained. After log n splits each PE is guaranteed to have a di�erent piece of

work. The scheme can be generalized for cases where n is not a power of 2.

Figure 2 shows the e�ect of selective initialization on a simulated run of RP

for a relatively small problem on a machine with 16384-PEs using a splitting

function that splits tasks in the ratio 1 : 2.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 20 40 60 80 100 120

P
E

 u
til

iz
at

io
n

time

simple initialization
selective initialization

Figure 2: PE utilisation over time with and without selective initialization.

It can be observed that selective initialization e�ectively eliminates the start-

up phase of low PE-utilization observed for basic RP. However, the tail of low

PE-utilization towards the end remains una�ected.

The impact made by initialization depends on the quality of the splitting

function. If it is perfect, i. e. it always splits a task in equal halfs, no dynamic

load balancing is needed at all. But in general, the log n splits performed by

initialization go only part of the way. It is to be expected that the subsequent

RP phase takes asymptotically as long as basic RP.

A point in favor of initialization schemes is that for some applications the

work-load does not slowly \dry out" as in our model, but eventually one PE �nds

a problem solution and immediately broadcasts a termination message. In this

13

case, the startup phase may be the main source of overhead.

7 Conclusions and Future Work

The simple randomized dynamic load balancing algorithm Random Polling has

often proved useful in practice. This paper helps to explain its performance

using quite general assumptions about the application and the underlying parallel

machine. For bounded message sizes and good splitting functions it derives new

tight scalability bounds. If the communication overhead is dominated by the

atomic grainsize of the problem or if the time needed for the delivery of a message

depends only on the problem size, then RP is asymptotically optimal. Figure 3

summarizes the results on the isoe�ciency function of RP for some characteristic

cases. A simple initialization scheme which involves only a single broadcast can

be used to eliminate a period of low PE utilization during startup.

network type d(n) logw logw logw wa h(w)

1 logb w wb wb s(w)

crossbar 1 n log n n log1+b n (n log n)
1

1�b n
1

1�a�b

fat tree, : : : log n n log2 n n log2+b n (n log2 n)
1

1�b (n log n)
1

1�a�b

3D mesh/torus 3
p
n n

4
3 log n n

4
3 log1+b n (n

4
3 log n)

1
1�b n

4
3(1�a�b)

2D mesh/torus
p
n n

3
2 log n n

3
2 log1+b n (n

3
2 log n)

1
1�b n

3
2(1�a�b)

ring, bus, tree n n2 log n n2 log1+b n (n2 log n)
1

1�b n
2

1�a�b

Figure 3: Isoe�ciency function of Random Polling if g(w) is dominated by

h(w)s(w)d(n); O(�) always implicit; �: optimal; k � k: tight bound.

An interesting methodological experience is that it may be useful to derive

the average case behavior of an algorithm indirectly by �rst investigating the

asymptotic behavior with high probability. One reason for this may be the lack

of an average case equivalent to Theorem 1 which makes it possible to reduce the

behavior of many parallel processes to the sequential case. By accepting some

complications for the derivation it is possible to incorporate many details of the

application and the parallel machine into the analysis.

An open question in the analysis of RP is the in
uence of message sizes on

performance: How many tasks are actually transferred? Would a routing strat-

egy involving pipelining be able to transmit long messages faster or would it be

hobbled by network contention? What, if the length of a task representation is

strongly dependent on its actual size? The dominating open question is, how a

practicable load balancing scheme might look like that is asymptotically more

14

e�cient than Random Polling for the type of tree structured computations con-

sidered here.

References

[ABF93] G. Aharoni, A. Barak, and Y. Farber. An adaptive granularity con-

trol algorithm for the parallel execution of functional programs. New

Generation Computing Systems, 9:163{174, 1993.

[ALMN91] Aiello, Leighton, Maggs, and Newman. Fast algorithms for bit-serial

routing on a hypercube. Mathematical Systems Theory, 24:253{271,

1991. Appeared also in 2nd Annual ACM Symposium on Parallel

Algorithms and Architectures (SPAA 90).

[Che52] H. Cherno�. A measure of asymptotic e�ciency for tests of a hy-

pothesis based on the sum of observations. Annals of Mathematical

Statistics, 23:493{507, 1952.

[EDH80] O. I. El-Dessouki and W. H. Huen. Distributed enumeration on be-

tween computers. IEEE Transactions on Computers, C-29(9):818{

825, September 1980.

[FM87] R. Finkel and U. Manber. DIB| A distributed implementation of

backtracking. ACM Trans. Prog. Lang. and Syst., 9(2):235{256, April

1987.

[FMM91] Rainer Feldmann, Peter Mysliwietz, and Burkhard Monien. Dis-

tributed game tree search on a massively parallel system. In Th.

Ottmann B. Monien, editor, Data structures and e�cient algorithms:

Final report on the DFG special joint initiative, volume LNCS 594,

pages 270{288. Springer-Verlag, September 1991.

[Hen93] D. Henrich. Initialization of parallel branch-and-bound algorithms.

In Proceedings of PPAI-93, 1993.

[KA91] V. Kumar and G. Y. Ananth. Scalable load balancing techniques

for parallel computers. Technical Report TR 91-55, University of

Minnesota, 1991.

[KR87] V. Kumar and V. N. Rao. Parallel depth �rst search. Part I. Inter-

national Journal of Parallel Programming, 16(6):470{499, 1987.

[Kum90] V. Kumar. Scalable parallel formulations of depth-�rst search. In

W. Kumar, editor, Parallel Algorithms for Machine Intelligence and

Vision. Springer, 1990.

15

[KZ93] R. M. Karp and Y. Zhang. Parallel algorithms for backtrack search

and branch-and-bound. Journal of the ACM, 40(3):765{789, 1993.

[L+89] T. Leighton et al. Dynamic tree embeddings in butter
ies and hy-

percubes. In ACM Parallel Processing Symposium, pages 224{234,

1989.

[Lei92] T. Leighton. Introduction to Parallel Algorithms and Architectures.

Morgan Kaufmann, 1992.

[Pea84] Judea Pearl. Heuristics. Addison Wesley, 1984.

[PFK93] C. Powley, C. Ferguson, and R. E. Korf. Depth-�st heuristic search

on a SIMD machine. Arti�cial Intelligence, 60:199{242, 1993.

[Raj92] S. Rajasekaran. Randomized algorithms for packet routing on the

mesh. In L. Kronsj�o and D. Shumsheruddin, editors, Advances in

Parallel Algorithms, pages 277{301. Blackwell, 1992.

[Ran94] A. Ranade. Optimal speedup for backtrack search on a butter
y

network. Mathematical Systems Theory, pages 85{101, 1994.

[San94a] P. Sanders. Massively parallel search for transition-tables of polyau-

tomata. In Parcella 94, VI. International Workshop on Parallel Proc-

cessing by Cellular Automata and Arrays (submitted), Potsdam, 1994.

[San94b] P. Sanders. Portable parallele Baumsuchverfahren: Entwurf einer

e�zienten Bibliothek. In Transputer Anwender Tre�en (submitted),

Aachen, 1994.

16

