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Abstract

This paper presents a pipeline synthesis and optimization technique for high-level language

programming of recon�gurable Custom Computing Machines. The circuit synthesis generates

hardware accelerators from a sequential program which exploit the recon�gurable hardware's

parallelism. Program loops are transformed to structural hardware speci�cations. The op-

timization algorithm uses integer linear programming to balance and pipeline the circuit's

registers. This global optimization determines the minimal amount of 
ip-
ops necessary for

an optimal pipeline throughput. It also considers the irregular 
ip-
op distribution on FPGAs.

Standard interface circuitry and a runtime system provide the connection between the accel-

erator unit and its host computer. An integrated compiler invokes the synthesis and produces

a program which downloads, calls and controls its hardware accelerators automatically.

1 Introduction

Recon�gurable Custom Computing Machines (CCMs) have proven useful for many applications.

They combine the 
exibility of software with the speed of application-speci�c hardware. The pro-

gram part executed in software takes advantage of the universality of a general-purpose processor.

Yet portions executed in hardware can be accelerated enormously. However, programming CCMs

remains a di�cult task since tradeo�s between software and hardware must be considered, and the

circuits accelerating the application must be designed manually. This work aims at automatically

extracting and generating accelerators from a sequential (software) program.

The following section presents the components of our high-level CCM compiler. Next, section 3

details the 
owgraph synthesis which generates circuits from the program's FOR-loops; and section

4 introduces a new optimization algorithm for pipelining. Finally, we discuss related work, report

results, and draw some conclusions.

2 High-level language compilation for CCMs

This section describes the main aspects of our high-level programming approach for CCMs. We

analyze a program written in a sequential programming language (as C or MODULA-2) and

extract hardware accelerators for it. The target architecture is a standard host computer with a

�eld-programmable accelerator unit comprising FPGAs and local memory.

�This work has been supported by the Deutsche Forschungsgemeinschaft, Graduiertenkolleg \Beherrschbarkeit

komplexer Systeme" (GRK 209/2-96).
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Figure 1: EVC1 with Pipeline Control Unit

We consider FOR-loops as hardware candidates since they express iterative computations. And

computations which perform the same operations on a large set of data are most likely to bene�t

from hardware acceleration. The loops used for hardware synthesis must be in the following normal

form: The loop bodies may not contain function calls or inner loops, and the FOR-statement must

have the structure FOR I:=0 TO N DO ..., i. e. the loop counter starts with 0 and is always incre-

mented by one. Finally, index expressions in the loop body may not depend on variables de�ned in

the loop. If not given, this normal form can often be achieved by source language transformations

(function inlining, loop unrolling, induction variable substitution). These transformations are state

of the art [1, 2] and therefore not repeated here.1

The pipeline synthesis and optimization algorithm (detailed in sections 3 and 4) generates 
ow-

graphs for FOR-loops in normal form. These 
owgraphs are then instantiated with hardware com-

ponents from an operator library. Using this library, we can also give estimates on the resources

required by a pipeline and on the expected speedup for implementing the loop in hardware. This

information is used by a subsequent partitioning algorithm which automatically determines if a

loop should be executed in software or in hardware. This partitioning can also be performed dy-

namically at run time. Then the actual loop length and the con�guration state of the CCM are

considered, too.

To allow automatic operation, the program speci�c pipelines are controlled by a pipeline control

unit (PCU). Figure 1 shows the PCU in the experimental environment we use, a Sun SPARCstation

with Virtual Computer Corp.'s EVC1 board. The PCU is used for every program and controls the

pipeline operation. I. e. it accesses and stores data, �lls and 
ushes the pipeline and controls the

1Additionally, external operating system or library calls, pointer operations and | due to the limitations of

current FPGA technology | 
oating-point operations cannot be synthesized to hardware.
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communication of the accelerator unit with the host computer. The PCU bu�ers input and output

values internally. So it provides more input and output ports to the pipeline than there are local

memory banks. However, due to the sequential memory access, more ports decrease the pipeline

throughput.

Another advantage of the PCU is the fact that it makes the pipeline independent of the actual

hardware and thus facilitates porting the compiler. It also allows the software to call standard

functions for sending and receiving data to and from the local memory and for operating the

pipeline. Together with runtime-system functions which con�gure and reset the FPGAs, these

functions allow to automatically download and call the accelerators. [3] presents more details on

the PCU and the hardware/software interface.

3 Flowgraph synthesis

This section describes how data
ow graphs (or 
owgraphs for short) are synthesized from a FOR-

loop. The 
owgraph will be used as a pipeline, i. e. execute the loop's iterations in an overlapped

fashion. Therefore loop-carried dependencies (which restrict the loop's parallelism) have to be

realized as feedback cycles in the 
owgraph.

3.1 Acyclic 
owgraph generation

First, we apply compiler optimizations as constant propagation and common subexpression elimi-

nation [1] to the loop body. This reduces the pipeline size. Then we analyze the loop body as if it

was executed only once. A method similar to the transmogri�er C compiler tmcc [4] is used. It an-

alyzes the dependencies of the statements and creates a purely combinational, acyclic 
owgraph.2

Conditional statements (the only control construct allowed in the normal form) are implemented

by multiplexers, and array accesses are treated in the same way as scalar variables.

The 
owgraph's input nodes have to be initialized with the values valid at the loop entrance, and

the values of output nodes must be read after loop execution. To enable pipeline processing, array

input and output nodes are realized as ports which provide (or process, respectively) the arrays

as sequential data streams.3 So we can treat an index shifted version of a one-dimensional input

array (e. g. X[I-2] with loop variable I) as a delayed version of another access of the same array

(e. g. X[I]). A shift-register (including the intermediate values, here X[I-1]) saves the old input

values and therefore reduces the I/O bandwidth requirements of the 
owgraph. Additionally, the

direct 
ow of intermediate values to the next operator saves cycles for storing and loading these

values. Figure 2 shows a loop (which we will use as a running example) and its 
owgraph. The

shaded nodes represent the input shift-register.

TMP := 0;

FOR I := 0 TO N DO

X[I] := TMP + Y[I+1];

Y[I+1] := X[I] + Y[I] - Y[I] / 8;

TMP := X[I];

END

Y[I+1] Y[I+1]

TMP

/ 8

X[I]

TMP

Y[I]

Figure 2: FOR-loop and its 
owgraph

2In contrast to tmcc, we create a 
owgraph on the word level rather than the bit level.
3Therefore, we currently only allow array accesses of the form X[I+C] and X[-I+C] (C constant). Arrays must be

read and written in the same direction to allow overlapping of the read, process and write phases. However, we can

treat multi-dimensional arrays if their higher-dimension indices do not depend on the loop variable and have always

di�erent values at runtime. Then, their one-dimensional subarrays are treated as di�erent one-dimensional arrays.
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Figure 3: Flowgraph with feedback cycle

X[-1] := 0;

FOR I := 0 TO N DO

X[I] := X[I-1] + Y[I+1];

Y[I+1] := X[I] + Y[I] - Y[I] / 8;

END

)

X[-1] := 0;

TMP := X[-1];

FOR I := 0 TO N DO

X[I] := TMP + Y[I+1];

Y[I+1] := X[I] + Y[I] - Y[I] / 8;

TMP := X[I];

END

Figure 4: Loop with array dependency and its transformation

3.2 Feedback cycles

In order to guarantee correct execution of the pipeline, we have to analyze loop-carried dependencies

and accordingly introduce feedback cycles. These dependencies exist if values de�ned in a loop

iteration are used in a subsequent iteration. This is the case if a scalar variable is an input and an

output in the 
owgraph. Then, we add a register to the output node and feed its value back to

the input node. The register holds its initial value only for the �rst loop iteration and stores the

feedback value on each successive iteration. Figure 3 shows the 
owgraph with a feedback cycle

for register TMP (shaded). A multiplexer, along with select and clock enable logic, for choosing and

storing the correct value in the register is necessary, too, but not shown in the �gure. Variables

with mutual dependencies may also lead to feedback cycles with more than one register.

A dependency for an array exists if the output node's index is the input node's index incremented

by one (if the array is traversed in increasing order) or decremented by one (if the array is traversed

in decreasing order).4 This is not the case in our example loop. Though array Y would prevent

parallelization, the access order of its elements is correct in a pipeline. So the 
owgraph of �gure

3 is correct. A 
owgraph with an array feedback cycle is very ine�cient because it uses only a

few values from the input port. Most of the time the values fed back from the output node are

used. This results in a large waste of I/O bandwidth. Therefore, we perform a high-level loop

transformation which introduces new scalar variables for the few initial values. Then, we can

use the method for scalar feedbacks and save input ports. Figure 4 shows a loop with an array

dependency and its transformation | our example loop. The transformation substitutes the new

scalar variable TMP for X[I-1].

Our detailed analysis decides for all loops if they can be executed by a pipeline or not. However,

as we will see in section 4.1, large feedback cycles will result in poor pipeline throughput. This

can reduce the attainable speedup signi�cantly.

4 Optimal pipelining

The 
owgraphs generated in section 3 are not always correct. The registers inserted in the feedback

cycles delay the values on some paths from the input to the output nodes. For correct execution

the delays on all paths must be equalized by register balancing. On the other hand, paths with-

out feedback cycles have a very long combinational delay. They should be pipelined to increase

4Here we consider all the registers of an input shift register as input nodes.
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throughput. Therefore, we must perform register balancing and pipelining together:

Register insertion problem

Find a correct circuit which allows maximal pipeline throughput using the minimal

number of FPGA 
ip-
ops.

We do not optimize the pipeline's latency because the time for �lling and 
ushing the pipeline

hardly a�ects the overall performance. And the PCU (cf. section 2) is able to handle varying

latencies automatically.

4.1 Clock period computation

The attainable clock period TC can be determined before performing the pipelining itself. There-

fore, it is used as a �xed parameter of the pipelining method.

The clock period TC is determined by the number of input and output ports in most cases. On a

CCM with one memory bank it is computed by

TC := NI � TI +NO � TO

where NI and NO are the numbers of input and output ports, respectively, and TI and TO are the

times for reading and writing a local memory word, respectively. TI and TO depend on the speed

of the used RAM and the available clock frequencies. TI = 50 ns and TO = 100 ns on the EVC1

board we use.

In some cases, very large feedback cycles will increase the required clock period. But it is not

allowed to insert a register in a cycle because it would change the circuit's functionality. However,

we can reduce the clock period by optimally distributing the registers in cycles with two or more

registers.5 We do not consider further high-level optimizatons as those proposed in [5].

Other reasons for an increased clock period are the operator delays. But unless the operators

are part of a feedback cycle, we can always choose pipelined implementations for the operators

themselves. So they will not increase the clock period and thus reduce the throughput.

4.2 ILP for optimal register insertion

Solving an integer linear program (ILP) determines integer variable values which minimize a linear

cost function according to a set of linear constraints (inequalities). The next sections give a new

formalization of the register insertion problem as an ILP. Then, we can use the simplex and branch-

and-bound algorithms to solve this global combinatorial optimization problem e�ciently.

We formally consider the 
owgraph G = (N;E) as a set of nodes N and a set of edges E � N �N .

Furthermore, I � N is the set of input nodes, O � N the set of output nodes, AI � I the set of

array input nodes, and P � N the set of pseudo operators which contain no logic (e. g. constant

shifts).

4.2.1 Preprocessing

We have to preprocess the 
owgraph before we can extract constraints for the ILP from it. First,

the feedback cycles are replaced by single supernodes because their registers must remain �xed.

This yields a directed acyclic graph (DAG). The node latency NLi of the supernodes is set to the

number of registers in the cycle. We de�ne NLi = 0 for purely combinational operaters, and NLi
equals the number of internal registers for pipelined operators.

5In this case one register has to remain at the cycle's exit, and we have to adjust the initialization of the moved

registers.
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Figure 5: Preprocessed 
owgraph

Input values

TC clock period (in ns)

NLi node latency of node i

ELi;j edge latency of edge (i; j)

Wi output width of node i

Ti;j signal propagation time (in ns) from output of node i to output of node j

Computed values

di maximal delay from register to output of node i (in ns)

ri number of registers inserted at output of node i

si number of registers saved by merging with operator i

li latency with respect to array input nodes (in clock cycles)

Table 1: Notation

Next, the shift registers which realize the delayed array inputs have to be removed because they

are subject to optimization. Instead, an edge from the array's input node to the node where the

delayed input was used is added. Its edge latency ELi;j is set to the required number of delays.

ELi;j = 0 for all other edges. Figure 5 shows G for our example. (Assume NL = 0 and EL = 0

unless otherwise stated.)

4.2.2 Notation

Table 1 de�nes the required notation. TC , NLi and ELi;j have been explained in the previous

sections. The operator's output width Wi is used to determine the precise number of 
ip-
ops

needed, and Ti;j represents the combinational delay of operator j with respect to its input from

node i. For nodes j representing feedback cycles or pipelined operators, Ti;j is the delay from

the input on edge (i; j) to the �rst internal register. Since we cannot accurately estimate routing

delays, we add a constant average routing delay to all values Ti;j . To guarantee a working circuit,

Ti;j � TC must hold for all edges (i; j). Figure 5 shows these input values, too.6

The following computed values are all non-negative integers. di is used as intermediate value to

keep track of the accumulated delay of an operator chain. ri and si count the required registers

and are used in the cost function. Finally, li is the number of registers on a path from an array

input port to node i, i. e. its latency. Because li determines the number of registers inserted on all

paths to node i, it guarantees a balanced pipeline.

6There is only one T value given for every node since the values are the same for all incoming edges.
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4.2.3 Cost function

The solution of the ILP minimizes the number of inserted 
ip-
ops. Thereby we automatically

unite register chains at di�erent outgoing edges of a node. The 
ip-
op count is represented by

the following cost function:

C =
X

i2N

ri �Wi �

X

i2NnInOnP;NLi=0

si �Wi

The �rst term computes the 
ip-
op count of all nodes by summing the products of ri (number of

registers needed at a node i) with the register's width Wi. The second sum computes the 
ip-
ops

which can be saved by merging them with the operator's combinational logic (0 � si � 1). It

only applies to operators which contain logic but no internal registers. This merging is possible

in FPGA families which combine combinational logic and 
ip-
ops in a logic block. For other

families, we simply omit the second sum.

4.2.4 Constraints

The following contraints de�ne admissible solutions:

For all input nodes i, the delay from a register is 0:

8i 2 I : di = 0 (1)

For all array input nodes i, the latency from array inputs is 0:

8i 2 AI : li = 0 (2)

All input and output nodes i must be registered:

8i 2 I [O : ri > 0 (3)

The number of registers saved by merging is limited by 1 and the number of registers instantiated

at all:

8i 2 N : si � 1; si � ri (4)

The accumulated delay of any node must not exceed the clock period:

8i 2 N : di � TC (5)

The DAG edges order the operator execution: Thus, for all edges (i; j), the latency of node j must

be at least as large as that of node i plus the internal latency of node i:

8(i; j) 2 E : lj � li +NLi (6)

The number of registers at a node's output is determined by its own and its successors' latencies.

Thus, for all edges (i; j), ri is larger than or equal to the di�erence of node latencies plus the edge

latency minus the internal latency of node i:

8(i; j) 2 E : ri � lj � li +ELi �NLi (7)

For edges (i; j) with no register inserted (li = lj), the accumulated delay of node j is at least the

sum of that of node i and the propagation time Ti;j . For registered edges, no constraint for dj
applies:7

8(i; j) 2 E : dj � Ti;j + di + TC � (li � lj) (8)

The delay of node j is at least the maximum of its incoming edges' propagation times:

8(i; j) 2 E : dj � Ti;j (9)

7For registered edges, di = 0 and li � lj < 0. Since Ti;j � TC always holds, Ti;j + di + TC � (li � lj) � 0.

7



s=0
r=0
l=0

d=50 ns

d=0 ns

s=0
r=0
l=2

d=40 ns

r=1
s=0l=1

r=1
l=1

d=40 ns

s=0

d=0 ns
s=0l=1

r=1

d=40 ns

l=2
r=1
s=0

s=1

r=3
l=0

d=0 ns

W=5

EL=1

EL=2

T=40ns T=40 ns

W=10 W=11

W=8

EL=2

Y[I+1]

X[I]
W=9

T=50 ns
NL=1

T=0 ns

Y[I+1]

W=8

/ 8

W=8

+/TMP

Figure 6: Flowgraph with computed values and pipeline registers

4.2.5 Register insertion

After solving the ILP, we insert registers in the 
owgraph in the following way: First, add ri
registers to the output of every node i; and next, replace all edges (i; j) by edges from the n-th

register to node j, where n = lj� li+ELi;j�NLi. This automatically combines the registers in all

outgoing edges of a node. Figure 6 shows the resulting 
owgraph. The values were computed using

the mixed IP{solver [6]. In this example, the algorithm actually has to consider the bitwidths of

the operators to decide between inserting a register at the output or at the input of the /8-node.

Otherwise, it could not determine the minimal number of 
ip-
ops.

5 Related work

Some previous work on generating hardware accelerators from a software program has been per-

formed. For example, the PRISM system [7] extracts coprocessors from C functions. However, it

does not exploit hardware parallelism on a higher level as our pipeline synthesis does. On the other

hand, Guccione et al. [8, 9] use vector code to synthesize operator pipelines similar to ours. This

enables more hardware parallelism but requires the programmer to write programs in less general

vector code.

Our loop analysis is similar to methods used in vectorizing and parallelizing compilers [2]. They

allow nested loops with arbitrary strides for the array accesses, but cannot detect all loops which

could be parallelized.

Several methods have been proposed for optimal register insertion and balancing. For example,

[10] discusses pipelining algorithms for vector computers, and [11] proposes an optimal balancing

technique using ILP for data 
ow computers. But both methods assume a machine architecture

with �xed register width and standard delay for all operators. None of these assumptions are true

for pipelines implemented on FPGAs. Therefore we have extended [11] to integrate balancing and

optimal pipelining for FPGAs.

6 Results and Conclusions

We presented new pipeline synthesis and optimization techniques for high-level CCM program-

ming. Experiments with a prototype MODULA-2 compiler have shown the general feasibility of

our compilation approach. Earlier measurements achieved speedups up to 14.1 for a FIR-�lter

application, and up to 21.1 for a greyscale-image smoothing application [3]. The experiments com-

pared software runtime on a Sun SPARCstation 10 to hardware con�guration and execution time

on an EVC1 board.
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The example loop of section 3 shows that our dependence analysis handles a considerably larger

class of loops than parallel loops. It automatically synthesizes scan (or pre�x) operators which

otherwise have to be speci�ed explicitly, e. g. in parallel SIMD languages. Hence, we can synthesize

more e�cient hardware accelerators for standard programs.

The ILP formalization introduced here computes the exact number and placement of 
ip-
ops

necessary for optimal throughput of pipelines implemented in FPGAs. Heuristic approaches cannot

do this exactly. This optimization on the 
ip-
op level, rather than on the register level, is especially

necessary for coarse-grained FPGAs which have relatively few 
ip-
ops per combinational gate. It

enables higher resource utilization in high-level CCM programming.
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