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Abstract

Qualitative modeling of technical processes may be
accomplished by dynamic fuzzy systems. A new
inference method with interpolating rules is proposed
as an essential basis for the analysis of this class of
systems. Using this approach, the system output is
dependent on both an interpolating rule derived from
the fuzzy input and the fuzzy input itself. A simple
example shows the typical behavior of such dynamic
fuzzy systems and leads to a stability definition.
Furthermore, it is shown how a fuzzy controller is
designed using a set of fuzzy rules describing the
process behavior. The design method is applied to a
continous stirred tank reactor.
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1 Introduction

Most control engineering applications of fuzzy logic
are based on a set of rules with fuzzy premises and
fuzzy conclusions. To describe complex processes
qualitatively, a fuzzy output dependent on fuzzy input
variables has to be calculated. There exist various
reasoning methods [1,6] with particular interpretation
of the fuzzy rules.

The shape of the membership function of the fuzzy
output calculated with the commonly used reasoning
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methods (e.g. "max-min-inference" or "max-prod-
inference") is generally different from the shape of the
membership functions of the premises and conclusions.
If, for instance, all membership functions of the
conclusions are fuzzy numbers, the membership
function of the fuzzy output is generally not a fuzzy
number.

An inference method is expected to evaluate a set of
fuzzy rules corresponding to the human way of
approximate reasoning. Due to the fact that human
beings are able to process only such fuzzy sets that
might be properly adjoined to linguistic values, only
this kind of fuzzy sets are appropriate inputs of fuzzy
systems. Since the membership functions of the
premises and conclusions are user-defined to mark
linguistic values e.g. as fuzzy numbers, they might be
viewed as understandable fuzzy sets. Considering in
particular dynamic fuzzy systems that feedback the
fuzzy output, it has to be guaranteed that the inference
maps understandable fuzzy inputs onto an
understandable fuzzy output.

In the following, a new fuzzy inference method called
"inference with interpolating rules" is presented that
guarantees an output of a fuzzy system belonging to the
same class of fuzzy sets as the fuzzy inputs. In this
contribution, triangular fuzzy numbers are chosen as
understandable fuzzy sets. In the third chapter, it is
shown that dynamic fuzzy systems feedbacking the
fuzzy output produce suitable results with this new
inference method. Furthermore, a new stability
definition for dynamic fuzzy systems and an approach
for stability analysis are presented. The fourth chapter
focuses on a new design strategy for fuzzy controllers
and the final chapter presents an application of the new
method. With this new approach, it is possible to
develop a fuzzy controller only from a linguistic
description of the process behavior.

Stability Analysis and Controller
Design for Dynamic Fuzzy Systems
Based on a New Fuzzy Inference

Approach1



2 Inference with interpolating rules

The rules of the fuzzy rule set are considered as
"fundamental rules". Together with the fuzzy inputs the
fundamental rules allow to determine interpolating
rules. An interpolation between premises and
conclusions of the fuzzy rule set yields the interpolating
premise and the interpolating conclusion of the
interpolating rule. Finally, the fuzzy output results from
the interpolating rule considering the fuzzy input.

2.1 Assumptions

The membership functions of all premises, conclusions,
and inputs have to belong to a class of functions that
can be described with a finite number of parameters. In
this contribution triangular fuzzy numbers ν ν νc l r; ,

are used that are clearly defined with their center νc

and the coordinates νl  and νr  of their left and right

foot, respectively. An interpolation is only possible if
the coordinates of the left and right foot as well as the
center of the adjacent premise membership functions
are different. Furthermore, it is presupposed that the
centers conc

i  of all conclusions with the coordinates
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i; ,  are different from each other and that
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c
j<  with i j≠ . These last two conditions

represent no restriction to the method and are only
introduced to avoid the consideration of some special
cases affecting the transparency of this contribution.

2.2 Determination and evaluation of an
interpolating rule

The following two fuzzy rules with one input and one
output are used to explain the new inference
mechanism, the extension to multiple input multiple
output systems is straightforward:

IF  "Input is small" THEN  "Output is large"
IF  "Input is large" THEN  "Output is small" (1)

The membership functions of the linguistic values
"small" and "large" of the input are triangular fuzzy
numbers A < >is is isc l r; ,  and B < >il il ilc l r; , , the

linguistic values "small" and "large" of the output are
the triangular fuzzy numbers C < >os os osc l r; ,  and D

< >ol ol olc l r; , , respectively. Considering a fuzzy input

Inp < >inp inp inpc l r; , , the parameters of the

interpolating premise IP < >p p pc l r; ,  and the

interpolating conclusion  IC < >c c cc l r; ,  of the rule set

(1) have to be determined. A measure for the distance
between two fuzzy numbers
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are introduced. The proportion of the two rules IF
"Input is small" THEN "Output is large" and IF "Input
is large" THEN "Output is small" to the interpolating
rule IF "Input is IP" THEN "Output is IC" correspond

to the related distances ~a  and 
~ ~b a= −1 . Thus, the

parameters of IP and IC are
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The center of the input inpc  is always equivalent to the

center of the interpolating premise IP. If INP is
included in IP, INP is a fuzzy set with the same center
and at least the same specificity (defined e.g. in [6]) as
IP. Therefore, it is straightforward to choose the output
Out < >out out outc l r; ,  equivalent to IC (fig. 1).
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Figure 1. Input included in the interpolating premise

If the fuzzy input Inp is not included in the
interpolating premise (see e.g. fig. 2), one or both feet
are outside of the support of IP. Hence, the parameter
of an outlying output foot is appropriately calculated by
interpolation between the feet of the membership
functions of the linguistic values "small" and "large" of
the output as follows:
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Figure 2 depicts the output Out in case of an input Inp
with only its right foot inpr  outside of the support of

IP. Consequently, the left foot outl  of the output

membership function is outside the support of IC,
whereas the right foot outr  of the output is equivalent

to the right foot cr  of IC. Obviously, moving the right

foot of Inp causes a relocation of the left foot of Out
due to the cross-over of the rules (1).
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Figure 2. Input not included in interpolating premise

Two adjacent membership functions of the input define
an interpolation domain. In order to avoid that the
transition of the input from one interpolation domain to
another is not continuous, fuzzy interpolation domains
have to be established by allocating continuous
membership functions to each interpolation domain. To
sum up this section, the presented inference method
guarantees a continuous mapping of understandable
fuzzy inputs onto an understandable fuzzy output.

3 Stability Analysis of Fuzzy Systems

In this section, dynamic fuzzy systems feedbacking the
fuzzy output are considered. As an example, figure 3
depicts a first order dynamic fuzzy system.
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Figure 3. Dynamic Fuzzy System

To show the basic behavior of such a fuzzy system and
to come to an appropriate stability definition, it is
sufficient to look at a simple undriven fuzzy system
only described by the following two rules

IF  Yk−1  is "negative" THEN  Yk  is "positive"

IF  Yk−1  is "positive" THEN  Yk  is "negative".

The interpolation domain spanned by the two linguistic
values " Yk−1  is positive" and " Yk−1  is negative" is the

universe of discourse of the linguistic variable Yk−1 .

The membership functions defined on the input domain
are shown in figure 4. Depending on the output
membership functions, the system shows different
dynamic behavior. Given the output membership
functions of figure 5, we obtain system 1 which is
stable since the fuzzy output converges to the fuzzy
number Y ; ,∞ = −0 2 2  for any initial fuzzy state. Figure

6 depicts the fuzzy output resulting from a crisp initial
state Y ; ,0 2 2 2= .
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Figure 4. Membership functions of the input domain
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Figure 5. Output domain membership functions
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Figure 6. Simulation of the fuzzy system 1



The output membership functions of system 2 shown in
figure 7 cause an unstable system behavior. Although
the center of the output converges to 0 for any initial
state, its left and right foot move to infinity (fig. 8).
Since the output is getting fuzzier with every step, the
specificity of the output vanishes for k→ ∞ .

µ

Figure 7. Too fuzzy output membership functions
cause an unstable system behavior for system 2

Figure 8. Specificity of the fuzzy output decreases
with each step

These simple examples suggest the following stability
definition for dynamic fuzzy systems:

An equilibrium point of a fuzzy system marked by a
crisp value R0  is (asymptotically) stable iff

• R0  is an (asymptotically) stable equilibrium

point for the center of the output yk

• the feet of the fuzzy output stay in a bounded
environment of R0 .

The equilibrium point of the two examples above is
marked by R0 =0. System 1 has one asymptotically

stable equilibrium point, whereas the equilibrium point
of system 2 is unstable.

Since it is sufficient to examine the mapping of the
crisp parameters of the fuzzy input onto the crisp
parameters of the fuzzy output, usual methods for the
stability analysis of nonlinear systems can be applied.
If the membership functions defined on the input
domain y yk k n− −1,...  are fuzzier than the membership

functions defined on the output domain yk , it is only

necessary to analyze the mapping of the centers of the
fuzzy input onto the fuzzy output. With a constant
fuzzy Uk  it results a discrete nonlinear system

described by

( )y y , yk,c k-1,c k-n,c= f �

with the centers y ,y , yk,c k-1,c k-n,c�  of the fuzzy output

Yk  and its delays Y Yk k n− −1,... . To analyze such a

system, methods based on common stability analysis
approaches may be used. The "Convex Decomposition"
[3,5] as an efficient numerical stability analysis method
has been successfully applied to dynamic fuzzy
systems. Considering first order dynamic fuzzy
systems, the stability region of an equilibrium point
might even be analytically determined.

4 Fuzzy Controller Design based on Fuzzy 
Models

In this chapter a method is presented to derive a fuzzy
controller from a fuzzy set of rules describing the
dynamic system behavior. The fuzzy controller is
designed to stabilize the system in the desired
equilibrium point.

A first order fuzzy system is used to explain the
essential design steps. The underlying set of rules is

IF Yk−1=A AND Uk−1 =X THEN Yk =AX

IF Yk−1=B AND Uk−1 =X THEN Yk =BX

IF Yk−1=C AND Uk−1 =X THEN Yk =CX

IF Yk−1=A AND Uk−1 =Z THEN Yk =AZ

IF Yk−1=B AND Uk−1 =Z THEN Yk =BZ

IF Yk−1=C AND Uk−1 =Z THEN Yk =CZ.

The premises A, B and C are defined on the universe of
discourse of the delayed output yk−1  and the premises

X and Z are defined on the universe of uk−1 . The

conclusions defined on yk  are not fuzzier than one of

the premises A, B or C. Therefore, it is sufficient to
consider the mapping of the centers yk c−1,  and uk c−1,

onto the center yk c, . Using the inference with

interpolating rules to evaluate the fuzzy rule set, it can
be shown [7] that

( ) ( )y y y uk c k c k c k c, , , ,r h= + ⋅− − −1 1 1

with the continous functions ( )r ⋅  and ( )h ⋅  holds.

Assuming ( )h , ,y yk c k c− −≠ ∀1 10 , the control law
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makes sure that the center of the output yk c,  reaches

the desired equilibrium point yR  within a single step.

Without limitation of the control signal, the stability
region equals the domain of definition. However, in
practical applications a limitation of the control signal
has to be taken into account. Now, a stability region of
the equilibrium point might be determined using a
Ljapunov function, e.g.

( ) ( )V y y yk c k c R, ,= −
2

.

Thus, the first step of the controller design is to form
the control law (1). Next, the stability region of the
desired equilibrium point is determined under
consideration of the limitation of the control signal.
With (1), an adequate manipulation variable might be
calculated for each center yk c−1,  of the ascertained

stability region. We are starting with the fuzzy
controller rule set

IF Yk−1=A THEN U uk A− =1

IF Yk−1=B THEN U uk B− =1         (3)

IF Yk−1=C THEN U uk C− =1 .

The premises A, B and C are known from the rule set
representing the process behavior, whereas the crisp
conclusions uA , uB  and uC  are calculated using (2).

Thus, the conclusion of the first rule is given by
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Due to the singletons used as conclusions, crisp
controller inputs lead to a crisp control output. Only for
the crisp inputs ac , bc  and cc  the evaluation of the

controller rule set (3) using the inference with
interpolating rules yields the same output as the crisp
control law (2). If yk c−1,  is somewhere between these

particular values, the controller output is determined by
interpolation. It might be necessary to add more rules if
the characteristics of the fuzzy controller differs too
much from the nonlinear characteristics of control law
(2).

For a dynamic fuzzy system of higher order as a
process model equation
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instead of equation (2) might be used as a basis for the
controller design.

With the inference with interpolating rules, the fuzzy
rule set resulting so far could be used for a fuzzy
controller. Due to the crisp conclusions, a
defuzzification would not be necessary for crisp inputs
of the controller. Such a controller has a characteristics
that consists of regions where multilinear functions are
defined [7]. However, we get a controller with the same
characteristics if the fuzzy rule set is evaluated with the
common sum-prod-inference together with a center of
singletons defuzzification. Only the premise
membership functions have to be manipulated in the
following way: The centers of all premises are kept but
the feet are moved to the centers of the adjacent
premises.
Finally, a fuzzy rule set with triangular membership
functions for the premises and singletons for the
conclusions results. This set of rules is used for a fuzzy
controller which can be evaluated with well-known
methods. Thus, the final tuning of the controller in the
closed loop with the real process might be
accomplished with common software tools.

5 Control of a Continous Stirred Tank 
Reactor

In the following, the new fuzzy controller design
approach is applied to develop a fuzzy controller for a
continous stirred tank reactor (fig. 9)[2].
To disintegrate to other substances a substance with the
concentration c0  is dumped into a tank reactor with a

catalyst inside. The temperature T in the tank is to be
controlled on a setpoint in order that the incoming
substance reacts with high intensity. The controller
output is the coolant temperature Tk  which is T0  in the

setpoint.
q , c  , T

0 0

q , c (t ) , T ( t )

q : Constant flow
   : Initial concentration of substance A
   : Initial temperature of substance  A

   (t) : Coolant temperature

c (t) : Concentration of substance A in reactor
T (t) : Temperature of substance A in reactor

c  0
T 0

Tk

T  ( t )k

Figure 9. Continous stirred tank reactor



As a simplification, we define u as the specific coolant
temperature and τ  as the specific temperature of the
substance as follows:

u
T T

T
k= − 0

0

,      τ = −T T

T
0

0

.

In the desired setpoint the specific coolant temperature
is zero and the specific temperature of the substance is
0,05.
The fuzzy variable τ k  defined on τk  is the fuzzy

output of the linguistic process model. It depends on its
delays τ k−1 , τ k−2  and the delayed fuzzy inputs Uk−1

und Uk−2 . 48 rules like

IF Uk−2  neg  AND Uk−1  pos AND τ k−2  medium

AND τ k−1  big   THEN   τ k  very big

characterize the process behavior. Based on this
linguistic process model, a fuzzy controller with 24
rules is developed following the design steps of chapter
4. The behavior of the controlled process is examined
in a simulation with an analytical nonlinear continous
process model [2]. Figure 10 shows the controlled
system in case of an initial temperature of the substance
of τR0

0 01= , . The performance of the specific

concentration of the substance

κ = −c c

c
0

0

which can not be measured on the real process is also
depicted. Even with a limited control signal of
u ≤ 0 04,  the controlled system shows a satisfactory

behavior.

0 0.5 1 1.5 2 2.5 3 3.5 4
0.2

0.28

0.58
0.65

                                                                                                                    Time [min]

Specific concentration

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.01

0.05
0.06

                                                                                                                    Time [min]

Specific temperature
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-0.04
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Specific coolant temperature

Figure 10. Behavior of the controlled stirred tank
reactor

Thus, it may be concluded that the presented design
method for fuzzy controllers is a powerful approach if
only qualitative (linguistic) knowledge about the
process is available.
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