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Abstract

An effort is made within the European Fusion Technology Programme framework to
obtain a fracture mechanics description of the material behaviour in the ductile to
brittle transition-regime using local fracture criteria. This report summarizes the nec-
essary procedural steps towards the development of an according design code scheme.
It makes heavy use of available code schemes such as the British Energy R6-Code
or the ESIS P6 procedure and specializes in application to the class of low activation
materials that are envisaged for ITER.

Through an integrated approach using a numerical stress analysis at experimentally
observed fracture loads of notched tensile specimens, a statistical evaluation of cleav-
age fracture parameters can be performed. The report contains a description of the
necessary steps for the experimental characterization and the numerical analysis as
well as results for the two RAFM steel variants F82Hmod and EUROFER 97 which
serve as basis for the verification of the method. Statistical inference methods are ad-
dressed as well as fractographic investigations that are essential for the verification of
the approach via numerical prediction of the fracture origin distribution. Limits of the
current methodology are given and topics of future research are indicated.

Zusammenfassung

Grundbegriffe einer bruchmechanischen Beschreibung des Sprödbruch-
verhaltens für niedrigaktivierbare St ähle auf Basis lokaler Versagenskriterien

Innerhalb des Europ̈aischen Fusionsprogramms wird eine bruchmechanische Beschrei-
bung des Materialverhaltens im Bereich des spröd-duktilenÜbergangs auf Basis lokaler
Versagenskriterien angestrebt. In diesem Bericht werden die dazu notwendigen Schritte
für die Entwicklung eines entsprechenden Designcodes zusammengefaßt. Der Bericht
greift auf bereits vorhandene Vorschriften wie den R6-Code von British Energy oder
die ESIS P6 Prozedur zurück und fokussiert auf deren Anwendbarkeit für die zum
Bau von ITER als Strukturmaterialien anvisierten ferritisch-martensitischen Stähle mit
niedriger Aktivierbarkeit.

Mittels eines einheitlichen Ansatzes einer numerische Spannungsanalyse für experi-
mentell ermittelte Lastniveaus beim Bruch gekerbter Rundzugproben kann eine statis-
tische Charakterisierung der Sprödbruchparameter erfolgen. Der vorliegende Bericht
entḧalt eine Zusammenstellung der notwendigen Schritte für die experimentelle Charak-
terisierung und die numerische Analyse sowie Ergebnisse für die beiden Stahlsorten
F82Hmod und EUROFER 97, die gleichzeitig als Basis zur Beurteilung der methodis-
chen Vorgehensweise dienen. Es wird auf Methoden der schließenden Statistik sowie
auf fraktografische Untersuchungen eingegangen. Die Grenzen der Methodik werden
aufgezeigt und Bereiche zukünftiger Untersuchungen aufgezeigt.
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1 General

The present analysis is part of theEURATOM Fusion Technology - Blanket pro-
gramme for 1999 to 2002 under EFDA Reference TW1-TTMS-005RAFM STEELS:
Rules for Design, Fabrication, and Inspection.

1.1 Introduction

1.1.1 Purpose

Within this framework, it is intended to apply a fracture mechanics concept for the
description of the ductile-to-brittle-transition behaviour of ferritic-martensitic steels
in the lower-shelf regime and to incorporate the concept into structural design cod-
ing schemes. Due to the need of transferability, a concept based on the mechanisms
of ductile or brittle fracture is used for the assessment of size and geometry effects.
Perspectives of future applications are cases where irradiation effects, complex me-
chanical as well as thermal loading conditions are to be taken into account.

In contrast to the global approaches, where geometrical limits on validity of test results
are imposed to ensure transferability of test data to component design, a local approach
relies on the combination of local (i.e. micro-structurally based) fracture criteria and
stress field analyses of selected geometries to ensure the transferability of material
data. Within a local approach transferability is thus inherently guaranteed as long as
the local fracture mechanism remains unchanged. This has to be verified by suitable
investigations of the fractured specimens.

A key issue of the local fracture description is the determination of the fracture pa-
rameters, which requires considerable (numerical and experimental) efforts. Fracture
parameters are obtained by numerical Finite Element (FE) elasto-plastic deformation
analyses of fracture tests. In the case of brittle fracture, a statistical approach is neces-
sary because of the inherent scatter.

1.1.2 Organisation of the report

The present report contains evaluation rules for local fracture criteria together with
experimental results on F82Hmod and EUROFER 97 steels. Contents are organized
as follows:

Section 1.2 contains some basic information about background and application of local
approach methods.

Section 1.3 addresses criteria levels used for brittle and ductile fracture, respectively.
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Definitions of relevant quantities are given in Section 1.4.

The main parts of the report deal with evaluation rules for FE stress analysis 2.2,
Weibull stress calculation 2.3 and fractography 2.4, describe statistical inference pro-
cedures used for parameter evaluation 3, and indicate limits of applicability 4.

Appendix B contains the necessary tables.

1.1.3 Related documents

Evaluation of cleavage fracture parameters is currently under standardization efforts in
different contexts (SINTAP [24], R6 [6], ESIS [12], ASTM [10]). Part of the proce-
dures described in this document were tested and verified within an ESIS round robin
[26].

The report is intended to be essentially self-contained, however, references to R6 code
[6] and ESIS P6 document [12] are made if appropriate.

1.2 Background

Body-centered cubic materials exhibit a transition from brittle (low toughness, cleav-
age) fracture behaviour at low temperature to ductile (microvoid initiation and coales-
cence) fracture at high temperature. In the transition regime, the material is character-
ized by a large scatter of toughness [7] and the presence of a pronounced size effect of
critical toughness parameters such asKIc or Jc [20]. This behaviour can be described
using ideas known as “Local Approach” [4].

1.2.1 Physical description of fracture processes

The basic background of this methodology is that global failure of the material is
triggered by the local behaviour in the vicinity of stress concentrations [31]. In the
cleavage regime, fracture is caused by unstable growth of crack initiation sites whose
activation is thought to coincide with the onset of plastic deformation [35]. The worst
(in some sense) initiation site is determining failure, which leads to an extreme value
distribution of the fracture (toughness) parameter. Basic assumptions which are essen-
tial for the validity of the model are that the possible initiation sites are statistically
independent and (for fracture mechanics specimens) that the stress field obeys small
scale yielding (SSY) conditions. Also, it is essential that the fracture mode is purely
cleavage and that there is no void initiation (i.e. no ductile damage). If these basic
assumptions are violated, modification of the model is necessary to take into account
the effects of gross yielding and of microvoid initiation [5].
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Result of the model is the description of the dependence of toughness parameters like
KIc or Jc of temperature as well as the scatter of the parameters in the different temper-
ature regimes.

In the ductile regime, the fracture mechanism is characterized by the formation and
growth of voids from inclusions. Void formation is thought to coincide with the onset
of plastic deformation, the initial void volume fraction thus given by precipitations,
inclusions etc.. The growth rate of voids triggered by stress triaxiality is given in
the model of Rice & Tracey [25], its corrections [16] or other models, e.g. Gurson
[17, 34]. Main purpose of the “Local Approach” is to combine stress and strain field
analyses with micro-structural features of the material causing failure events. This
approach allows predictions with respect to size effects and with respect to scatter in
the material behaviour at the expense of an increased numerical effort.

Basic ideas of the Local Approach for cleavage fracture have its foundation in the long
tradition of micro-mechanical investigations, theoretical as well as using fractography
which all aim at a fundamental understanding of the fracture processes on a micro-
scopic scale. Among others, there are Stroh [35] (formation of micro-cracks within
grains due to inhomogeneous plastic deformation), Ritchie et al. [18, 32], Rosenfield
[33], Hahn [14] etc.

Essential ingredients for a successful application of the ideas of the Local Approach
consist of firstly a precise description of the initiation of unstable crack propagation
and an exact description of the stress field in the material. Also an appropriate sta-
tistical treatment of the experimental data and its numerical evaluation is essential.
Fractography is indispensable for an appropriate interpretation of the applied model
and also to ensure that the basic assumptions of the model with respect to the fracture
mode are justified.

1.2.2 Weakest link arguments

Basis of the statistical treatment of brittle fracture is the weakest link model. The ba-
sic line of arguments in the establishment of Local Approach in the field of cleavage
fracture ([2, 4, 19, 22]) are based on some essential assumptions which are summa-
rized below. The reasoning which leads to the essential relations that govern Weibull
stress considerations is given in the sequel. The following assumptions characterize
the micromechanical and statistical model:

• There is a large population of weak spots in the material, which can be modelled
in the framework of fracture mechanics (e.g. as penny-shaped cracks)

• Failure of the material starts from and is triggered by the most dangerous ’weak
spot’
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• The weak spots are randomly distributed within the material

• The weak spots are acting independently, i.e. there is no interaction

• The weak spots become ’active’ with the onset of plastic deformation, i.e. only
weak spots within the plastic zone are relevant for failure

• The size of the weak spots is a random variable

• The critical size of a weak spot is described within the framework of fracture
mechanics through a relation of the form

ac(~r) =
Wp

σ2
c(~r)

(1)

whereWp contains parameters of the material relevant for fracture resistance
as well as crack geometry parameters andσc is the stress at location~r that is
responsible for fracture (usually the first principal stress).

Based on these assumptions, the probability for failure of a single weak spot is just
the probability that its sizea exceeds the critical sizeac (Eqn. 1) and is given by the
relation

P(a > ac) =
∫ ∞

ac(~r)
fa(a)da (2)

where fa is the probability density of the size distribution of the weak spots.

Now we are prepared to calculate the probability of failure for a given specimen or
component.

We will proceed in two steps. In the first step,Step 1, we will assume, that there is
exactly oneweak spot in the specimen. In the second step,Step 2, we will take into
account the contribution of a random number ofk weak spots per specimen.

Step 1 - One weak spot of random size in the specimenWe calculate the proba-
bility Q1 for the weak spot to cause failure of the specimen.Q1 is given by

Q1 =
1

Vpl

∫
Vpl

∫ ∞

ac(~r)
fa(a)dadV (3)

where fa is the probability density of the size distribution andVpl denotes the volume
of the plastic zone. Here, it is assumed that weak spots are distributed randomly within
the plastic zone and that the location of the weak spots follows a uniform distribution.
Thus,Vpl can be interpreted as a normalization parameter of the location distribution
anddVpl /Vpl is the probability of having a weak spot in a randomly chosen volume
dVpl at an arbitrary location within the plastic zone. Now we proceed to
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Step 2 -k weak spots in the specimen We now assess the probability for at least
one out of a random number ofk weak spots in the specimen to cause failure. If we
havek independent weak spots, the survival probabilityRk of the specimen is

Rk = (1−Q1)k (4)

whereQ1 is the failure probability of one weak spot. If there is a mean number ofM
weak spots per unit volume, the probabilitypk of having exactlyk weak spots in the
plastic zone is given by the POISSON distribution with meanMVpl and leads to

pk =
(MVpl)k

k!
exp(−MVpl) (5)

We obtain the survival probabilityPs of the specimen by summing up the contributions
for all possible numbers of weak spots in the specimen

Ps =
∞

∑
k=0

pkRk (6)

and, using Eqns. (4) and (5), we finally end up with the relation

Ps = exp(−MVplQ1) (7)

which leads to the failure probabilityPf of the following form:

Pf = 1−Ps

= 1−exp
(
−MVplQ1

)
= 1−exp

−M
∫

Vpl

∫ ∞

ac(~r)
fa(a)dadV

 (8)

To determine the failure probabilityPf , some knowledge of the size distribution of the
weak spots is necessary. Assuming a decay of the probability densityfa which is of a
power-law type: fa(a) ∝ a−n, the second integral of Eqn. (8) takes on the following
form:

∫ ∞

ac(~r)
fa(a)da =

C
n−1

ac(~r)
−(n−1) (9)
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with a normalization constantC. With Eqns. (1) and (9) we obtainQ1 from Eqn. (3)
as

Q1 =
C

(n−1)Wn−1
p

1
Vpl

∫
Vpl

σ2(n−1)
c dV (10)

and it is now possible to define a new variable termed the Weibull stressσW. This is
done by insertingQ1 into Eqn. (8) and observing that we may writePf in the following
alternate form:

Pf = 1−exp

(
−
(

σW

σu

)m)
(11)

with σW defined through

σm
W =

1
V0

∫
Vpl

σm
c dV with m= 2(n−1) (12)

andσu defined through

σm
u =

(n−1)Wn−1
p

MV0C
(13)

so that it is possible to interpret the failure probabilityPf as the value of the cumulative
distribution function of the Weibull stressσW at failure:

Pf = FσW(σW)

= 1−exp

(
−
(

σW

σu

)m)
(14)

This means, that we have introduced the Weibull stressσW as a random variable that
characterizes the fracture resistance of the material against cleavage (brittle) fracture.
The Weibull stressσW at fracture is a material parameter (i.e. it is independent of the
stress state in the material) but may depend on temperature. (Recent work, however,
indicates that this is perhaps not the case [15].) The Weibull slopem characterizes the

6



scatter of the Weibull stress. The C.O.V (coefficient of variation) ofσW is a function
of m alone and is given by

COVσW =

√
Γ(1+ 2

m)−
(
Γ(1+ 1

m)
)2

Γ(1+ 1
m)

(15)

(see Fig. 1). The parameterσu gives the 1−1/e (=63.2%)-quantile ofσW.

The unit volumeV0 which appears in eqns. (12) and (13) is introduced for dimensional
purposes only and is usually set to 1mm3. 1

For the analysis, the Weibull stress at fracture has to be determined from suitably cho-
sen experimental loading parameters, such as e.g. the diameter reduction for notched
tensile specimens at fracture or the value of theJ-integral for cracked specimens.

1.2.3 Fracture mechanics

For pre-cracked (fracture mechanics) specimens, e.g. three point bend, center cracked
(CCT), compact tension (CT) or circumferentially cracked tensile specimens, a rela-
tion between the Weibull stress at fracture and the fracture toughness can be estab-
lished provided that small scale yielding (SSY) prevails [23]. This relation is the basis
of various so-called toughness scaling methods.

1.3 Criteria levels

1.3.1 Brittle fracture criteria

In the lower shelf regime, weakest link approach is appropriate.

1.3.2 Ductile fracture criteria

In the upper shelf regime, a ductile fracture model has to be adopted. This is not within
the scope of this document.

1Some authors useV0 as an additional parameter related toσu (see e.g. [4, 22]) chosen to be small
enough that stress gradients can be neglected and large enough that the weakest link argument for finding
a micro-crack of a given size still holds (e.g. 10 grains). If stress gradients are important for the fracture
behaviour, this can be directly incorporated into the fracture model leading to eq. (14) at the expense of
losing the meaning ofσu andmas material parameters (see Section 4).
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1.4 Definitions

Section 1.4 gives a collection of brief definitions for the usage of terms contained in
this document.

1.4.1 Small scale yielding (SSY)

The plastic zone size is small compared to specimen and crack dimensions.

Small scale yielding (SSY) provides a basis for the use of LEFM in an elastic-plastic
material. SSY requires the crack tip plastic zone to be much smaller than any relevant
dimension of the specimen. Consequence: the stress state outside the plastic zone,
but well away from the specimen boundary is characterized by the first singular term
of the Williams eigen-expansion. ASTM criterion for plane-strain fracture toughness
of metallic materials (E-399) [9] e.g. specifies that for CT specimens with widthW,
heightB and crack sizea the following criteria be met:

B, a, (W−a) >= 16∗ radius of SSY-plastic zone (16)

(= 2.5∗ K2

yield strength2
)

1.4.2 Triaxiality

The triaxiality ratioh is defined as

h =
σkk

3σeq
(17)

whereσkk is the trace of the stress tensor andσeq is the equivalent (von Mises) stress
at the selected location.σkk

3 is the hydrostatic part of the stress tensor.

1.4.3 Average fracture strain

The average (diametral) fracture strain for axisymmetrical notched specimens is de-
fined as:

ε f = 2ln

(
d0

df

)
(18)

whered0 anddf are the initial diameter and the diameter at fracture, respectively, of
the minimum section.
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1.4.4 Average fracture stress

The average fracture stress for axisymmetrical notched specimens is defined as:

σ f =
4Ff

πd2
f

(19)

whered0 anddf are the initial diameter and the diameter at fracture, respectively, of
the minimum section andFf is the load at fracture.

1.4.5 Stress envelope

The maximum of the first principal stress is responsible for the cleavage fracture pro-
cess. During loading, the first principal stress may decrease in part of the speci-
men/component due to stress redistribution processes. Taking the maximum for all
times at each location leads to a stress envelope that gives a maximum value for the
first principal stress that a specific location has seen during loading history.

1.4.6 Weibull stress

The Weibull stressσW is defined as

σm
W =

1
V0

∫
Vpl

σm
1 dV (20)

whereσ1 is the first principal stress,m is the Weibull modulus andVpl denotes the
plastic zone over which the integration is carried out. The quantityV0 is a unit volume
and usually set to 1mm3.

1.4.7 Weibull parameters

The Weibull stressσW is a random variate with a Weibull distribution. Its cumulative
distribution functionFσW(σW) is given by

FσW(σW) = 1−exp

(
−
(

σW

σu

)m)
(21)

with the quantitiesm andσu as parameters of the distribution. For ferritic steels,m
typically attains values of about 20, whereas the value ofσu depends on the choice of
the unit volumeV0.
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1.4.8 Unit volume

The unit volumeV0 in the definition of the Weibull stress is introduced for dimensional
purposes only and usually set to 1mm3. It has to be reported because numerical values
of σW and correspondingly ofσu depend on the choice ofV0.

A scaling procedure allows conversion for different choices ofV0. Let V0 andṼ0 be
two differently taken reference volume values. Then, the respective values ofσW and
σ̃W are given by

σ̃W =
(

V0

Ṽ0

) 1
m

σW (22)

with the Weibull modulusm as obtained by the maximum likelihood estimation pro-
cedure.

1.4.9 Plastic zone

The plastic zone is defined as the region within the specimen/component where the
von Mises stress,σeq, exceeds the uniaxial yield stress,σy, of the material.

1.4.10 Maximum Likelihood estimator

The maximum likelihood procedure is used for the determination of the Weibull pa-
rameters from a Weibull stress sample. Due to the fact that the Weibull stress itself
depends on one of the Weibull parameters, an iterative procedure is necessary.

1.4.11 Confidence limits

Confidence limits are used to assess the statistical uncertainty of the Weibull parame-
ters. This is usually done according to ISO standards. (see also [12]) However, these
limits are not strictly valid for iterative maximum likelihood estimation. An alternate
method which does not suffer from this restriction is described in Section 3.3.

2 Evaluation rules; Procedure

Cleavage fracture parameters are obtained by numerical integration of the stress field
of fractured specimens. The evaluation procedure in this section is described using
results of axisymmetrically notched tensile bar specimens [12, 6].
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Use of pre-cracked specimens is currently under consideration but poses additional
difficulties in experimental setup as well as in numerical modelling and is therefore
currently not incorporated in code schemes. A promising exception is the use of
circumferentially precracked axisymmetric tensile specimens, where numerical mod-
elling is possible using a two-dimensional analysis. Here, efforts are made during
the last few years within the R6 code [6] to use this specimen geometry for cleavage
fracture characterization. A draft procedure for the use of pre-cracked specimens to
obtain cleavage fracture parameters is currently being under development within the
European Structual Integrity Society (ESIS).

2.1 Experimental data base

Axisymmetric notched tensile specimens are used for the analysis of cleavage fracture
behaviour.

2.1.1 Specimen geometry

Specimen dimensions as in Ref. [12] are based on a minimum diameter (i.e. measured
across the notch root) of 10mm. If availability of material or testing equipment are
limited, smaller values are possible. Care has to be taken to select a specimen length
that is sufficient to avoid inference from the gripping system. (i.e. the length between
shoulders exceeds 2 times specimen diameter) The minimum diameter should be se-
lected large enough to avoid too much plastic deformation in the unnotched bar. A
possible geometry for a specimen is given in Fig. 2. The notch radius is variable and
allows the selection of different degrees of multiaxial loading. The notch radius should
be large enough to allow a correct measure of the lateral contraction at the notch tip.
However, it should not be too large to avoid excessively shallow notches.

For specimens with a minimum diameter of 10 mm, notch roots of 2, 4, and 10mm,
respectively are proposed for ferritic steels according to [12], while scaling to smaller
sizes (down to 50%) is explicitely permitted.

For F82Hmod and EUROFER97 characterization, a minimum diameter of 5 mm, and
notch roots of 1, 2, and 5mm, respectively are used [29]. For geometries other than
those recommended in [12], selection of suitable notch geometries has to be done
according to elastic-plastic analysis of stress fields and plastic zone evalution until
fracture. In order to avoid effects from notch root finishing and to ensure that frac-
ture is initiating from locations well inside the material, the final geometries should be
selected in a way that, for stresses near to fracture, the axial stress in the plane per-
pendicular to the specimen axis at the notch root attains its maximum at the specimen
interior. Also the course of the axial and circumferential stresses as well as the degree
of multiaxiality in that plane should vary significantly for the various geometries.
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2.1.2 Specimen preparation

All dimensions should be machined with sufficient accuracy. Ref. [12] states an accu-
racy of +0, -0.05mm for the minimum diameter and an accuracy of +/-0.02mm for the
diameter. Finishing of the notch root has to be performed in axial direction to avoid
surface defects that may trigger premature failures. At least 10 specimens should be
tested per specimen geometry. To reduce statistical scatter of the results, however, a
sample size of 20 specimens is more appropriate. All specimens have to be measured
in order to ensure identical specimen dimensions and meeting of tolerance require-
ments.

2.1.3 Experimental procedure

Two parameters shall be continuously recorded during the test: load and diametral
contraction across the minimum section. This can be achieved using extensometer or
optical equipment. The test is performed under displacement control at 0.5 mm/min or
under diametral strain control.

The final diameter of the broken specimen must be given. This can be measured after
fracture. If the values obtained from the broken specimens for two perpendicular direc-
tions according to the main fabrication directions disagree, the presence of anisotropy
must be mentioned in the report. Otherwise, the extensometer/optical recordings are
assumed to be correct.

The temperature must be controlled to be within +/- 2◦C for the notch.

The fractured surfaces should be photographed and kept for further inspection. A
fractographic inspection of the fracture surfaces should be performed.

2.1.4 Reporting of the results

The precise initial dimensions must be stated. (Specimen ID, nominal notch radius,
specimen diameter, diameter of the minimum section, actual notch radius)

The following results have to be reported for each specimen: Specimen ID, nominal
notch radius, specimen diameter at fracture, load at fracture initiation, average fracture
strain, average fracture stress, Weibull stress at fracture. Additionally, the Weibull
modulus, the characteristic Weibull stress, and the selected unit volume have to be
reported for the complete sample. These quantities are obtained from the numerical
analysis of the test results (see 2.2).

As a result of the fractographic inspection, fracture origin locations and fracture ap-
pearance should be reported for each specimen. If this is not feasible, all specimens
with average fracture strain levels below 3% and above 30% should be rejected [12].
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2.2 Finite Element Analysis

Any standard finite element code capable of nonlinear structural analysis for elastic-
plastic material behaviour may be used for the analysis. For the Finite Element Anal-
ysis of the stress field at fracture, the diameter reduction∆d between initial and final
diameter measured at the notch root is used as loading variable. Each sample of speci-
mens thus corresponds to a sample of∆d-values. For each of the∆d-values, a complete
FE stress analysis is obtained.

2.2.1 Meshing and boundary conditions

An axisymmetrical 2-D model of the notched round bar geometry is appropriate. Due
to symmetry reasons only half of the specimen has to be modelled. Axisymmetric
isoparametric quadratic elements with 8 nodes and reduced integration are recom-
mended for the analysis. Details of the finite element meshing are up to the user.
As a rule of thumb, a minimum number of 8-10 elements at the notch section (z= 0)
is required and the size of the element at the notch root should be sufficiently small to
catch the notch stress distribution with reasonable accuracy.

Boundary conditions due to symmetry are:

uz = 0 atz= 0 andur = 0 atr = 0 (23)

Loading can be applied by prescribedz-displacement boundary conditions for the
nodes atuz = xx, wherexxdenotes the displacement pickup location in the experiments
(this needs not necessarily be so but facilitates comparison to experimental results!!!).
The distancexx has to be sufficiently large to prevent inhomogeneous axial stresses
due to the notch influence.

The applied force,Ff , at fracture is calculated from the axial stresses atuz = xx. The
diameter reduction∆d at fracture corresponds to 2 times the radial displacement of the
node located at the notch root. The factor of 2 has to be applied for symmetry reasons
(only the half section of the specimen is modelled in the FE axisymmetrical analysis).

The calculatedF−∆d curve has to meet the experimentally observed load-displacement
curve (see for example Figures 3, 4). If this is not the case, a check of the material pa-
rameters and/or the meshing is necessary.

It has to be ensured that the calculated∆d-values coincide with the experimentally
obtained diametral contractions at fracture which have been obtained by suitable mea-
surements (e.g. optical or extensometer-based). In a first step, this can be obtained
by choosing sufficiently small load increments in the FE analysis. Additional steps
may be necessary with suitably adjustedz-displacement boundary conditions in order
to achieve sufficiently accurate∆d-values.
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2.2.2 Output requests

Mesh geometry and nodal displacements are required for the subsequent analysis. For
the calculation of the cleavage fracture parameters, output of the principal stresses
is required at the integration points of each element for each sample value of∆d at
fracture.

Note: Within the ABAQUS FE code [1], this is achieved by

*EL FILE, POS=INTEGRATION POINTS
PS

2.2.3 Postprocessing

For the Weibull stress calculation, postprocessing of the Finite Element stress output
is necessary. At each of the increasing fracture load levels characterized by increasing
absolute values of∆d, the maximum value of the first principal stress at each integra-
tion point is identified and retained for subsequent use in Weibull stress calculation. A
postprocessing routineWEISTRABA[27] is available for this purpose if the FE code
ABAQUS [1] is used. It is useful to generate a result file containing only the necessary
quantities (i.e. meshing information and principal stress envelopes at fracture) for the
subsequent Weibull stress calculation. In the routineWEISTRABA, this file is called
the*.wst -file.

2.3 Weibull stress calculation

The Weibull stressσW is obtained from the*.wst -file by numerical integration. For
numerical reasons, the integration of the Weibull stress according to eq. (12) is per-
formed after normalizingσ1 by a suitably chosen reference stress, e.g. the flow stress.
This is done to avoid numerical difficulties resulting from large values of the Weibull
exponentm which is typically in the range of 10-30. The correction is removed after
the numerical integration is complete. Eq. (12) then reads:(

σW

σref

)m

=
1
V0

∫
Vpl

(
σ1

σref

)m

dV (24)

and final correction is simply made by multiplying the resulting integral value by the
value of the reference stressσm

ref.

Stresses are given at the integration points of the ABAQUS elements. Reduced integra-
tion is used, which means that we have 2x2=4 integration points per element in the 2D
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case and 2x2x2=8 integration points in 3D problems. The Weibull stress is integrated
element-by-element. In the general case of a 3D model, we have

σW = σref

[
1
V0

∑
el

σWel

] 1
m

with the auxiliary quantity of

σWel =
ki

∑
i=1

wi

k j

∑
j=1

w j

kk

∑
k=1

wk

(
σ1(r i , sj , tk)

σref

)m

(detJ(r i , sj , tk)) (25)

whereki , k j , kk the number of integration points in each dimension andwi , w j , wk

the respective weights for the Gaussian integration.r i , sj , tk are the coordinates in
the FE natural element and detJ(.) is the determinant of the Jacobi matrix for the
transformation from the global to the natural element at the natural coordinatesr i , sj ,
tk.

The contributions from each element are summed up to give the final result. Forki =
k j = kk = 2, we havewi = w j = wk = 1 andr i , r j , rk = 1/

√
3.

2.3.1 Plastic zone size

A plastic zone indicator flag is used to extend numerical integration only over the
plastic zone and not over the entire volume of the specimen. This plasticity flag is
set to 1 for each integration point where plasticity occurs (in terms of a von Mises
yield criterion or by checking the plastic strains of the FE output) and 0 otherwise.
Any averaging procedures are avoided. Only the stress values at the integration points,
which are known to be the most exact values within an element [3], are used.

For each FE load step, corresponding to a specimen fracture event, the first principal
stress values are checked against the values of the previous step and a stress envelope is
constructed to take into account locally decreasing stresses due to stress redistribution
which may lead to decreasing values of the local risk of rupture.

2.3.2 Symmetry factor

If only part of the specimen is analysed for symmetry reasons, the calculated value of
the Weibull stress has to be adjusted according to

σW→ σW ∗sym( 1
m) (26)
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wheresymis the symmetry factor reflecting applied symmetry conditions. If e.g. only
half of the geometry is modelled,sym= 2. For axisymmetric configurations, the sym-
metry factor may depend on the Finite Element code, i.e. whether a full 2π thickness
or just a ”unit thickness” of 1 rad is used. (For a ”unit thickness” of 1 rad,sym= 2∗2π
rad for the axisymmetric half-geometry configuration considered).

2.3.3 Unit volume

Weibull stress values and the parameterσu of the Weibull stress distribution are af-
fected by different choices of the numerical value for the unit volumeV0. Some authors
useV0-values that are linked to microstructural length scales. A scaling procedure al-
lows conversion, ifV0, as in the present context, is taken as arbitrary reference volume
for the statistical model:V0 = 1mm3. LetV0 andṼ0 be two differently taken reference
volume values. Then, the respective values ofσW andσ̃W are given by

σ̃W =
(

V0

Ṽ0

) 1
m

σW (27)

with the Weibull modulusm as obtained by the maximum likelihood estimation pro-
cedure.

2.3.4 Local risk of rupture

The local risk of rupture [28] is defined as the probability of fracture starting from
some sub-volume,Vs of the specimen, i.e. as the conditional probability of having
a micro-crack in the sub-volume,Vs under the condition that this micro-crack causes
unstable fracture. At a given load leveli characterized by a Weibull stress value of
σW(i) the local risk of rupture at~x is given by

πi(~x|σW) =
σm

1 (~x, i)
V0σm

W(i)
(28)

which can be integrated over the whole Weibull stress range to give the integrated local
risk of rupture:

π(~x) =
∞∫

0

πi(~x|σW) fσW(σW)dσW (29)

with πi(.) as given in Eqn. 28 and the probability densityfσW(.) of the Weibull stress at
fracture. Eqn. 29 can be solved by numerical integration. An appropriate upper limit
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of the integration domain can be selected by checking if the normalization condition∫
V

π(~x)dV = 1 is satisfied.

The quantityπ(.) predicts the fracture initiation location distribution that is accessible
via fractographic identification of fracture origin locations. Within the postprocessor
WEISTRABA, values ofπ(.) are available at each integration point of the finite element
model and graphical visualization is obtained by the graphical visualization package
FEMVIEW.

A comparison ofπ(.) with experimental values for the fracture origin distribution can
be used to verify if the numerical approach to fracture description is appropriate. This
is especially useful for transferability predictions to different geometries.

2.4 Fractography

Fractography is an essential part of the procedure. All of the fractured specimens
should be qualitatively (fracture appearance) and quantitatively (fracture origin loca-
tion) investigated. A first assessment of the fracture appearance can be performed
using a light microscope. For a thorough analysis, use of SEM is recommended. Frac-
tographic analysis gives a justification of the appropriateness of analysis in that it is
able to identify the relevant micromechanisms that are responsible for the fracture pro-
cess.

2.4.1 Fracture appearance

Fracture appearance should be classified as trans- or intercrystalline cleavage with or
without ductile parts. Fracture origins, if detectable, should be identified as visible.
The presence of particles at the fracture initiation sites should be mentioned and the
nature of the particles should be identified.

2.4.2 Fracture origin distribution

For each of the specimens, the location of the fracture initiation sites that are detected
should be given. It is preferable to give the location with respect to the specimen
centre that has to be identified. A table of the fractographic results should contain
the following entries: specimen No., fracture appearance characterization, cleavage
initiation inclusion classification (size and kind), presence and size of ductile islands,
distance of fracture initiation site to specimen axis.

Availability of fracture origin distribution data is the key issue for comparison between
experimental results and numerical analysis and justification of numerical approach via
local risk of fracture assessment.
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3 Evaluation rules; Statistical inference

As indicated in the previous paragraphs, the Weibull stress depends on the Weibull
modulusm which in turn is a result of the statistical analysis of the Weibull stress
values of the fractured specimens. As shown in Ref. [21], an iterative procedure
is required for the determination of the distribution parameters of the Weibull stress,
namelymandσu. In a first step, starting from a suitable value of the Weibull modulus,
e.g. m = 20, a preliminary sample of Weibull stress values is calculated. From this
sample, the distribution parametersm andσu are determined using Maximum Like-
lihood procedure. Ifm differs not too much from the previous value, the procedure
is terminated, otherwise it is repeated with the new value ofm until convergence is
attained which is usually the case after few (2-5) iterations.

After convergence is attained, the maximum likelihood estimates are used to calculate
90%-confidence intervals. Two alternative methods are possible: Maximum likelihood
based confidence intervals according to the procedure in [8] and confidence intervals
based on resampling or bootstrap methods [30].

3.1 Determination of the Weibull parameters

The determination of the two parametersm andσu has to be performed iteratively as
σW depends on the (unknown) parameterm.

Step 1: Use a starting value ofm= 20 and calculate the Weibull stressσW at fracture
for each fractured specimen as described in Section 2.3.

Step 2: Rank the results in increasing order of Weibull stressσW. Plot ln ln[ 1
1−F(xn)

]
as a function of lnx(n), wherex(n) is the Weibull stress of the specimen with rank

n andF(xn) = n
N+1 is the mean (cumulative) frequency of the n-th observation

(using n
N+1 as plotting position is generally recommended for statistical reasons

– e.g. [13] –, although it plays no role if the maximum likelihood method is used
for parameter estimation). As the theoretical relation between failure probability
andσW is given by

Pf = 1−exp

[
−
(

σW

σu

)m]
, (30)

a plot of ln ln[ 1
1−F(xn)

] versus lnσW(n), whereσW(n) is the “experimental” Weibull

stress for the specimen with rankn, should give an approximately linear relation.
(Step 2 is only recomended for visualization purposes and is not necessary for
Step 3)
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Step 3: Use the maximum likelihood method to determine the parametersm and
σu of the Weibull distribution of the Weibull stress. The maximum likelihood
estimators ofm andσu are denoted by ˆm andσ̂u, respectively. ˆm is the solution
of the nonlinear equation

N
m̂

+
N

∑
i=1

lnσW(i)−N
∑N

i=1σm̂
W(i)

lnσW(i)

∑N
i=1σm̂

W(i)

= 0 (31)

which can be obtained by any suitable numerical procedure. Using ˆm, the maxi-
mum likelihood estimator̂σu is obtained from the equation

σ̂u =

(
1
N

N

∑
i=1

σm̂
W(i)

) 1
m̂

(32)

Correctm̂ with the unbiasing factorb(N) given in Table 1:m̂unb = m̂∗b(N).

Step 4: If the maximum likelihood estimatorŝσu andm̂unb agree within a fixed toler-
ance with those of the previous iteration, their values are considered acceptable.
Otherwise, repeat steps 2-4. A flow diagram is given in Figure 5 to illustrate the
iterative procedure.

3.2 Confidence intervals form and σu based on maximum likeli-
hood estimators

Confidence intervals for the Weibull parametersmandσu determined by the maximum
likelihood method are obtained with the following procedure:

1. Select a confidence level 1− 2α (usually 90% or 95%, i.e.α = 0.05 or α =
0.025).
Setα1 = α andα2 = 1−α.

2. Taket1(N, α1) andt2(N, α2) from Table 2.
CalculateA = σ̂u∗exp(−t2/m̂) andB = σ̂u∗exp(−t1/m̂).
Report[A, B] as the confidence interval forσu for a confidence level of 1−2α.

3. Takel1(N, α1) andl2(N, α2) from Table 3.
CalculateC = m̂/l2 andD = m̂/l1.
Report[C, D] as the confidence interval form for a confidence level of 1−2α.

19



These quantities have to be calculated with the maximum likelihood estimate ofm
without the unbiasing factors.

The Maximum Likelihood confidence intervals of the Weibull parameters shall be re-
ported as shown in Table 4:

Note: The confidence intervals form andσu are valid only ifm̂ andσ̂u were obtained
by the maximum likelihood method. Any other estimation procedure for the Weibull
parameters yields different confidence intervals.2

The Tables 1, 2 and 3 were taken from Ref. [36] and are also contained in [8]. It should
be noted, that the confidence intervals obtained in this way are not strictly valid for the
iterative Weibull parameter estimation procedure.

Presentation of the results shall be made in a graph according to Figure 6 with suitably
adjusted range of horizontal axes. The calculated values for lnσW are plotted together
with the Weibull distribution, which is a line with the slope ˆmand containing the point
(σ̂u, 0).

3.3 Bootstrap confidence intervals

It should be emphasized that the evaluation of the distribution parameters ofσW,
namelym andσu, is based on statistical inference methods that are applied without
fully meeting the conditions of their applicability. It is not clear beforehand whether
the maximum likelihood parameter estimation gives valid results for the present case,
where the random variate depends on the distribution parameter itself and an itera-
tive procedure is used to obtain consistent results. There are no methods available to
quantify the statistical properties of the estimators of the Weibull parameters.

For these reasons, the confidence intervals based on the results found by Thoman et al.
[36] and used in the ESIS P6 procedure [12] may only approximately reflect the sta-
tistical uncertainty of the parameter estimates. This situation is completetly different
from the Weibull parameter estimation in the strength measurement for ceramics (see
[8]), where no iterative procedure is required.

Alternative ways for confidence intervals which do not suffer from these restrictions
are given by so-called bootstrap methods.

3.3.1 Bootstrap simulation procedure

In the following, averyconcise description of the bootstrap method mainly based on
[11] is given. (We use the common statistical nomenclature, hats (ˆ.) denote estimates,

2An EXCEL template for the purpose of (non-iterative) Weibull parameter evaluation is available
upon e-mail request to: riesch-oppermann@imf.fzk.de. Iterative Weibull parameter evaluation is con-
tained in theWEISTRABAcode available at the same address.
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asterisks (.∗) denote quantities related to bootstrap samples;n is the sample size,B is
the number of bootstrap simulations.)

Suppose we observex1, . . . ,xn independent data points, from which we compute a
statistic of interests(x1, . . . ,xn).

A bootstrap sample x∗ = (x∗1, . . . ,x
∗
n) is obtained by randomly sampling,n times, with

replacement, from the original data pointsx1, . . . ,xn. If this is repeatedB times, we can
generate a large number of independent bootstrap samplesx∗1, . . . ,x∗B, each of sizen.

Corresponding to each bootstrap samplex∗b there is a bootstrap replication ofs, namely
s(x∗b), the value of the statistic of interest computed for samplex∗b.

As a result, we obtain a bootstrap estimate for the statistic of interest:

s(.) =
B

∑
b=1

s(x∗b)/B (33)

together with a bootstrap estimate for its standard deviation, namely

ŝeboot =

{
1

B−1

B

∑
b=1

[
s(x∗b)−s(.)

]2
} 1

2

(34)

wheres(.) = ∑B
b=1s(x∗b)/B is the mean value of the statistics afterB bootstrap simu-

lations defined in Eq. (33).

Note: In the present case, the statistic of interest consists of the pair(m, σu) given in
Eqs. (31) and (32), respectively.

3.3.2 Bootstrap confidence interval calculation

Using ŝeboot ands(.), it is possible to attribute confidence intervals to bootstrap es-
timatesθ̂∗(.) = ∑B

b=1 θ̂∗(b)/B, where θ̂∗(b) = s(x∗b) is the bootstrap replication of
θ̂ = s(x1, . . . ,xn) as defined above. For example, we obtain the usual standard normal
(1−2α)-confidence interval forθ, which is

θ̂±z(α)× ŝe (35)

wherez(α) is theα-quantile of a standard normal distribution, e.g.z(0.95) = 1.645 for
the 90% confidence intervals. This leads to the so-calledstandard bootstrap confidence
intervalswhich still rely on normal theory assumptions as can be seen from Eq. (35),
which only holds exactly if̂θ follows a normal distribution.
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But it is also possible to obtain accurate confidence intervals for non-normally dis-
tributed statistics, i.e. without relying on normal theory assumptions. This is done
by usingĜ, the cumulative distribution of the bootstrap replicationsθ̂∗. The 1−2α
percentile intervalfor θ is defined by theα- and(1−α)-quantiles ofĜ. FromB in-
dependent bootstrap samples, we obtain the percentile confidence intervals by taking
theB×αth value in the ordered list of theB bootstrap replications of̂θ∗ as the lower
limit and theB× (1−α)th value of the list as the upper limit of the confidence in-

terval. These empirical percentiles are denotedθ̂∗(α)
B andθ̂∗(1−α)

B respectively and the
percentile confidence interval reads

[θ̂∗(α)
B , θ̂∗(1−α)

B ] (36)

for a confidence level of 1−2α.

Some drawbacks of the percentile intervals with respect to coverage probabilities are
handled by an improved version of the percentile method including bias correction in
the bootstrap replications. Bias correctionz0 is obtained from the cumulative distribu-
tion functionĜ of the bootstrap replication and the original estimateθ̂ of the original
sample via

z0 = Φ−1(Ĝ(θ̂)) (37)

whereΦ−1(.) is the inverse standard normal cumulative distribution function (CDF).
We obtain the bias-corrected bootstrap confidence intervals as[

Ĝ−1(Φ(2z0 +Φ−1(α))
)
, Ĝ−1(Φ(2z0 +Φ−1(1−α))

)]
(38)

with z0 from Eq. (37). Figure 7 contains the necessary auxiliary quantities and indi-
cates how the bias-corrected bootstrap confidence intervals are obtained.

3.3.3 Reporting of bootstrap confidence intervals

Confidence intervals for the Weibull parametersmandσu determined by the bootstrap
method are obtained with the following procedure:

1. Select a confidence level 1− 2α (usually 90% or 95%, i.e.α = 0.05 or α =
0.025).
Setα1 = α andα2 = 1−α.

2. PerformB bootstrap simulations and obtain the empirical CDFĜ(.) of m̂∗ and
σ̂u
∗, respectively.

Obtain the empirical percentiles ˆm∗(α1)
B andm̂∗(α2)

B andσ̂u
∗(α1)
B andσ̂u

∗(α2)
B .
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3. Calculate the bias correctionz0 for σu(see Eq. 37):z0 = Φ−1(Ĝ(σ̂u)) .
CalculateA = Ĝ−1

(
Φ(2z0 +Φ−1(α1))

)
andB = Ĝ−1

(
Φ(2z0 +Φ−1(α2))

)
.

Report[A, B] as the confidence interval forσu for a confidence level of 1−2α.

4. Calculate the bias correctionzm
0 for m (see Eq. 37):zm

0 = Φ−1(Ĝ(m̂)) .
CalculateC = Ĝ−1

(
Φ(2zm

0 +Φ−1(α1))
)

andD = Ĝ−1
(
Φ(2zm

0 +Φ−1(α2))
)
.

Report[C, D] as the confidence interval form for a confidence level of 1−2α.

The bootstrap confidence intervals of the Weibull parameters shall be reported as
shown in Table 5.

4 Validation/limits

The procedure was tested and verified within an ESIS Round Robin on Numerical
Modelling [26]. Correct implementation of the cleavage fracture model was confirmed.
It turned out, however, that modelling of the stress analysis and the subsequent statis-
tical analysis of the results requires some skill in the choice of appropriate boundary
conditions which may be source of large deviations in the resulting cleavage fracture
parameters.

Validation using F82Hmod data was done using circumferentially notched tensile spec-
imens. A limited number of results was obtained from pre-cracked axisymmetric ten-
sile specimens. Validation using EUROFER data was done using circumferentially
notched specimens. For both materials, fractography revealed a limited domain of
applicability of the pure cleavage fracture model.

A detailed summary of the verification results is contained in a companion report [29].

Limits for cleavage fracture modelling are related to presence of different fracture
mechanisms and violation of the basic assumptions described in Section 1.2. Pres-
ence of different fracture mechanisms may be related to different temperature regimes
and/or irradiation effects. Violation of basic assumptions may be due to steep stress
gradients as e.g. related to thermal shock loading or in pre-cracked specimens, where
the fracture mechanics failure model according to Eq. 1 is inappropriate and has to be
extended [30].

5 Status notes

This document contains the basic analysis procedure for a fracture mechanics assess-
ment of failure of RAFM in the lower shelf regime based on the Local Approach to
cleavage fracture.

23



Application of Local Approach methods requires a combination of different methods:
experimental, numerical, statistical, and fractographic analysis steps are necessary.

Local Approach methods and their application are a subject of ongoing research. The
methods described in this document are well established and applied to a number of
large-scale test evaluation programmes for reactor pressure vessel steels.

Open questions remain with respect to their unmodified applicability to RAFM steels.
Here, issues of strain-induced anisotropy seem to play an important role as crack initi-
ation mechanism.
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Figure 1: COV of Weibull distributed random variate for different modulim.

Figure 2: Geometry of axisymmetrically notched bar (RNB) specimens.
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Figure 3: CalculatedF − ∆d-curves and experimental∆d at fracture (-75◦C) for
F82Hmod steel.
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Figure 4: CalculatedF − ∆d-curves and experimental∆d at fracture (-150◦C) for
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Figure 5: Flow diagram for iterative Weibull parameter estimation procedure.
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B Tables

N b(N)
5 0.669
6 0.752
7 0.792
8 0.820
9 0.842

10 0.859
11 0.872
12 0.883
13 0.893
14 0.901
15 0.908
16 0.914

N b(N)
17 0.919
18 0.923
19 0.927
20 0.931
21 0.935
22 0.938
23 0.941
24 0.943
25 0.945
26 0.947
27 0.949
28 0.951

N b(N)
29 0.953
30 0.955
31 0.957
32 0.958
33 0.959
34 0.960
35 0.961
36 0.962
37 0.963
38 0.964
39 0.965
40 0.966

Table 1: Unbiasing factorsb(N)

32



N α1 = 0.02 α1 = 0.05 α1 = 0.10 α2 = 0.90 α2 = 0.95 α2 = 0.98
5 -1.631 -1.247 -0.888 0.772 1.107 1.582
6 -1.396 -1.007 -0.74 0.666 0.939 1.291
7 -1.196 -0.874 -0.652 0.598 0.829 1.12
8 -1.056 -0.784 -0.591 0.547 0.751 1.003
9 -0.954 -0.717 -0.544 0.507 0.691 0.917

10 -0.876 -0.665 -0.507 0.475 0.644 0.851
11 -0.813 -0.622 -0.477 0.448 0.605 0.797
12 -0.762 -0.587 -0.451 0.425 0.572 0.752
13 -0.719 -0.557 -0.429 0.406 0.544 0.714
14 -0.683 -0.532 -0.41 0.389 0.52 0.681
15 -0.651 -0.509 -0.393 0.374 0.499 0.653
16 -0.624 -0.489 -0.379 0.36 0.48 0.627
17 -0.599 -0.471 -0.365 0.348 0.463 0.605
18 -0.578 -0.455 -0.353 0.338 0.447 0.584
19 -0.558 -0.441 -0.342 0.328 0.433 0.566
20 -0.54 -0.428 -0.332 0.318 0.421 0.549
22 -0.509 -0.404 -0.314 0.302 0.398 0.519
24 -0.483 -0.384 -0.299 0.288 0.379 0.494
26 -0.46 -0.367 -0.286 0.276 0.362 0.472
28 -0.441 -0.352 -0.274 0.265 0.347 0.453
30 -0.423 -0.338 -0.264 0.256 0.334 0.435
32 -0.408 -0.326 -0.254 0.247 0.323 0.42
34 -0.394 -0.315 -0.246 0.239 0.312 0.406
36 -0.382 -0.305 -0.238 0.232 0.302 0.393
38 -0.37 -0.296 -0.231 0.226 0.293 0.382
40 -0.36 -0.288 -0.224 0.22 0.285 0.371
42 -0.35 -0.28 -0.218 0.214 0.278 0.361
44 -0.341 -0.273 -0.213 0.209 0.271 0.352
46 -0.333 -0.266 -0.208 0.204 0.264 0.344
48 -0.325 -0.26 -0.203 0.199 0.258 0.336
50 -0.318 -0.254 -0.198 0.195 0.253 0.328
52 -0.312 -0.249 -0.194 0.191 0.247 0.321
54 -0.305 -0.244 -0.19 0.187 0.243 0.315
56 -0.299 -0.239 -0.186 0.184 0.238 0.309
58 -0.294 -0.234 -0.183 0.181 0.233 0.303
60 -0.289 -0.23 -0.179 0.177 0.229 0.297
62 -0.284 -0.226 -0.176 0.174 0.225 0.292
64 -0.279 -0.222 -0.173 0.171 0.221 0.287
66 -0.274 -0.218 -0.17 0.169 0.218 0.282
68 -0.27 -0.215 -0.167 0.166 0.214 0.278
70 -0.266 -0.211 -0.165 0.164 0.211 0.274

Table 2: Auxiliary variables for the confidence interval forσu
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N α1 = 0.02 α1 = 0.05 α1 = 0.10 α2 = 0.90 α2 = 0.95 α2 = 0.98
72 -0.262 -0.208 -0.162 0.161 0.208 0.269
74 -0.259 -0.205 -0.16 0.159 0.205 0.266
76 -0.255 -0.202 -0.158 0.157 0.202 0.262
78 -0.252 -0.199 -0.155 0.155 0.199 0.258
80 -0.248 -0.197 -0.153 0.153 0.197 0.255
85 -0.241 -0.19 -0.148 0.148 0.19 0.246
90 -0.234 -0.184 -0.144 0.143 0.185 0.239
95 -0.227 -0.179 -0.139 0.139 0.179 0.232

100 -0.221 -0.174 -0.136 0.136 0.175 0.226
110 -0.211 -0.165 -0.129 0.129 0.166 0.215
120 -0.202 -0.158 -0.123 0.123 0.159 0.205

Table 2: Auxiliary variables for the confidence interval forσu (cont’d.)
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N α1 = 0.02 α1 = 0.05 α1 = 0.10 α2 = 0.90 α2 = 0.95 α2 = 0.98
5 0.604 0.683 0.766 2.277 2.779 3.518
6 0.623 0.697 0.778 2.03 2.436 3.067
7 0.639 0.709 0.785 1.861 2.183 2.64
8 0.653 0.72 0.792 1.747 2.015 2.377
9 0.665 0.729 0.797 1.665 1.896 2.199

10 0.676 0.738 0.802 1.602 1.807 2.07
11 0.686 0.745 0.807 1.553 1.738 1.972
12 0.695 0.752 0.811 1.513 1.682 1.894
13 0.703 0.759 0.815 1.48 1.636 1.83
14 0.71 0.764 0.819 1.452 1.597 1.777
15 0.716 0.77 0.823 1.427 1.564 1.732
16 0.723 0.775 0.826 1.406 1.535 1.693
17 0.728 0.779 0.829 1.388 1.51 1.66
18 0.734 0.784 0.832 1.371 1.487 1.63
19 0.739 0.788 0.835 1.356 1.467 1.603
20 0.743 0.791 0.838 1.343 1.449 1.579
22 0.752 0.798 0.843 1.32 1.418 1.538
24 0.759 0.805 0.848 1.301 1.392 1.504
26 0.766 0.81 0.852 1.284 1.37 1.475
28 0.772 0.815 0.856 1.269 1.351 1.45
30 0.778 0.82 0.86 1.257 1.334 1.429
32 0.783 0.824 0.863 1.246 1.319 1.409
34 0.788 0.828 0.866 1.236 1.306 1.392
36 0.793 0.832 0.869 1.227 1.294 1.377
38 0.797 0.835 0.872 1.219 1.283 1.363
40 0.801 0.839 0.875 1.211 1.273 1.351

Table 3: Auxiliary variables for the confidence interval form
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N α1 = 0.02 α1 = 0.05 α1 = 0.10 α2 = 0.90 α2 = 0.95 α2 = 0.98
42 0.804 0.842 0.877 1.204 1.265 1.339
44 0.808 0.845 0.88 1.198 1.256 1.329
46 0.811 0.847 0.882 1.192 1.249 1.319
48 0.814 0.85 0.884 1.187 1.242 1.31
50 0.817 0.852 0.886 1.182 1.235 1.301
52 0.82 0.854 0.888 1.177 1.229 1.294
54 0.822 0.857 0.89 1.173 1.224 1.286
56 0.825 0.859 0.891 1.169 1.218 1.28
58 0.827 0.861 0.893 1.165 1.213 1.273
60 0.83 0.863 0.894 1.162 1.208 1.267
62 0.832 0.864 0.896 1.158 1.204 1.262
64 0.834 0.866 0.897 1.155 1.2 1.256
66 0.836 0.868 0.899 1.152 1.196 1.251
68 0.838 0.869 0.9 1.149 1.192 1.246
70 0.84 0.871 0.901 1.146 1.188 1.242
72 0.841 0.872 0.903 1.144 1.185 1.237
74 0.843 0.874 0.904 1.141 1.182 1.233
76 0.845 0.875 0.905 1.139 1.179 1.229
78 0.846 0.876 0.906 1.136 1.176 1.225
80 0.848 0.878 0.907 1.134 1.173 1.222
85 0.852 0.881 0.91 1.129 1.166 1.213
90 0.855 0.883 0.912 1.124 1.16 1.206
95 0.858 0.886 0.914 1.12 1.155 1.199

100 0.861 0.888 0.916 1.116 1.15 1.192
110 0.866 0.893 0.92 1.11 1.141 1.181
120 0.871 0.897 0.923 1.104 1.133 1.171

Table 3: Auxiliary variables for the confidence interval form (cont’d)
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Statistical evaluation ofσW (Maximum Likelihood confidence intervals)

Input for statistical inference

N b(N) 1−2α α1 = α α2 = 1−α1

Maximum likelihood results

σ̂u

m̂

m̂unb

Auxiliary variablest1, t2, l1, l2

t1(N, α1)

t2(N, α2)

l1(N, α1)

l2(N, α2)

Confidence limits

Lower limit A Upper limit B

Confidence interval forσu:

Lower limit C Upper limit D

Confidence interval form:

Table 4: Template for reporting Maximum Likelihood confidence intervals for Weibull
stress calculations.
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Statistical evaluation ofσW (bootstrap confidence intervals)

Input for statistical inference

N b(N) 1−2α α1 = α α2 = 1−α1

Maximum likelihood results

σ̂u

m̂

m̂unb

Auxiliary variablesz0, zm
0

z0

zm
0

Confidence limits

Lower limit A Upper limit B

Confidence interval forσu:

Lower limit C Upper limit D

Confidence interval form:

Table 5: Template for reporting bootstrap confidence intervals for Weibull stress cal-
culations.
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