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This paper examines implementation techniques for future generations of micro�
processors� While the wide superscalar approach� which issues � and more in�
structions per cycle from a single thread� fails to yield a satisfying performance�
its combination with techniques that utilize more coarse�grained parallelism is
very promising� These techniques are multithreading and multiprocessing� Multi�
threaded superscalar permits several threads to issue instructions to the execution
units of a wide superscalar processor in a single cycle� Multiprocessing integrates
two or more superscalar processors on a single chip� Our results show that the
��threaded ��issue superscalar processor reaches a performance of ���� executed
instructions per cycle� Using the same number of threads� the multiprocessor chip
reaches a higher throughput than the multithreaded superscalar approach� How�
ever� if chip costs are taken into consideration� a ��threaded ��issue superscalar
processor outperforms a multiprocessor chip built from single�threaded processors
by a factor of ��� in performance	cost relation�

� Introduction

Current microprocessors utilize instruction�level parallelism by a deep proces�
sor pipeline and by the superscalar instruction issue technique� DEC Alpha
������ PowerPC �	� and ��	� MIPS R�				� Sun UltraSparc and HP PA�
			
issue up to four instructions per cycle from a single thread� VLSI�technology
will allow future generations of microprocessors to exploit instruction�level par�
allelism up to 
 instructions per cycle� or more� Possible techniques are a wide
superscalar approach �IBM power� processor is a ��issue superscalar proces�
sor�� the VLIW�approach� the SIMD approach within a processor as in the
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HP PA��		LC� and the CISC�approach� where a single instruction is dynam�
ically split into its RISC particles� as in the AMD K� or the Intel PentiumPro�
However� the instruction�level parallelism found in a conventional instruction
stream is limited� Recent studies show the limits of processor utilization even
of today�s superscalar microprocessors� Using the SPEC�� benchmark suite�
the PowerPC ��	 shows an execution of 	��� to �� instructions per cycle ����
and even an 
�issue Alpha processor will fail to sustain ��� instructions per
cycle ����

The solution is the additional utilization of more coarse�grained parallelism�
The main approaches are the multiprocessor chip and the multithreaded proces�
sor� The multiprocessor chip integrates two or more complete processors on
a single chip� Therefore every unit of a processor is duplicated and used in�
dependently of its copies on the chip� For example� the Texas Instruments
TMS��	C
	 Multimedia Video Processor ��� integrates four digital signal pro�
cessors and a scalar RISC processor on a single chip�

In contrast� the multithreaded processor stores multiple contexts in di�erent
register sets on the chip� The functional units are multiplexed between the
threads that are loaded in the register sets� Depending on the speci�c mul�
tithreaded processor design� only a single instruction pipeline is used� or a
single dispatch unit issues instructions from di�erent instruction bu�ers si�
multaneously� Because of the multiple register sets� context switching is very
fast� Multithreaded processors tolerate memory latencies by overlapping the
long�latency operations of one thread with the execution of other threads � in
contrast to the multiprocessor chip approach�

While the multiprocessor chip is easier to implement� use of multithreading
in addition to a wide issue bandwidth is a promising approach� Several ap�
proaches of multithreaded processors exist in commercial and in research ma�
chines�

� The cycle�by�cycle interleaving approach� exempli�ed by the Denelcor
HEP ��� and the Tera processor ��� switches contexts each cycle� Because
only a single instruction per context is allowed in the pipeline� the single
thread performance is extremely poor�

� The block�interleaving approach� exempli�ed by the MIT Sparcle proces�
sor ���� executes a single thread until it reaches a long�latency operation�
such as a remote cache miss or a failed synchronization� at which point
it switches to another context� The Rhamma processor �� switches con�
texts whenever a load� store or synchronization operation is discovered�
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� The simultaneous multithreading approach ��� combines a wide issue su�
perscalar instruction dispatch with the multiple context approach by pro�
viding several register sets on the microprocessor and issuing instructions
from several instruction queues simultaneously� Therefore the issue slots
of a wide issue processor can be �lled by operations of several threads�
Latencies occurring in the execution of single threads are bridged by is�
suing operations of the remaining threads loaded on the processor� In
principle the full issue bandwidth can be utilized�

While the simultaneous multithreading approach ��� surveys enhancements of
the Alpha ����� processor� our multithreaded superscalar approach is based on
the PowerPC �	� �
�� Both approaches� however� are similar in their instruction
issuing policy� We simulate the full instruction pipeline of the PowerPC �	��
and extend it to employ multithreading� However� we simplify the instruction
set �using an extended DLX ��� instruction set instead�� use static instead of
dynamic branch prediction� and renounce the �oating point unit� We install
the same base processor in our multiprocessor chip simulations to guarantee a
fair comparison with the multithreaded superscalar approach�

� Evaluation Methodology

��� The Superscalar Base Processor

Our superscalar base processor �see Fig� �� implements the six�stage instruc�
tion pipeline of the PowerPC �	� processor �fetch� decode� dispatch� execute�
complete� and write�back��

The processor uses various kinds of modern microarchitecture techniques as
e�g� separate code and data caches� branch target address cache� static branch
prediction� in�order dispatch� independent execution units with reservation
stations� rename registers� out�of�order execution� and in�order completion�

The fetch and decode units always work on a continuous block of instructions�
These blocks may not always be the maximum size� as there are limitations by
the cache size �instruction fetch cannot overlap cache lines� and by branches
that are predicted to be taken� As block size we choose the number of instruc�
tions that could be issued simultaneously�

The dispatch unit is restricted by the maximum issue bandwidth � the maxi�
mum number of instructions that can be issued simultaneously to the execution
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Figure �
 Superscalar architecture

units� The maximum issue bandwidth of a processor is mainly limited by the
restricted number of busses from the rename registers to the execution units�
and not by the instruction selection matrix� Due to the issuing policy of the
PowerPC �	�� executions are always issued in program order to the reservation
stations of the execution units� The instructions are executed out�of�order by
the execution units� The use of separate reservation stations for the execu�
tion units simpli�es the dispatch� because only the lack of instructions� the
lack of resources and the maximum bandwidth limit the simultaneous instruc�
tion issue rate� Data dependencies are taken care of by rename registers and
reservation station� Instructions can be dispatched to the reservation stations
without checking for control or data dependencies� An instruction will not be
executed until all source operands are available�

All standard integer operations are executed in a single cycle by the simple
integer units� Only the multiply and the divide instructions are executed in a
complex integer unit� The execution of multiply instructions is fully pipelined�
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and consumes a speci�ed number of cycles� The integer divide is not pipelined�
its latency may also be speci�ed in the simulator�

The branch unit executes one branch instruction per cycle� Branch prediction
starts in the fetch unit using a branch target address cache� A simple static
branch prediction technique is applied in the decode unit� Each forward branch
is predicted as �not taken�� each backward branch as �taken�� A static branch
prediction simpli�es processor design� but reduces the prediction accuracy�

Completion is controlled by the completion unit� which retires instructions in
program order with the same maximum rate as the maximum issue bandwidth�
When an instruction is retired� its result is copied from the rename register
to its register in the register set� The rename register and the slot in the
completion bu�er are released�

The memory interface is de�ned as a standard DRAM interface with con�g�
urable burst sizes and delays� to simulate advanced RAM types like SDRAM or
EDO� All caches are highly con�gurable to test penalties due to cache thrashing
caused by multiple threads�

The processor is designed scalable� the number of execution units and the
size of bu�ers are not limited by any architectural speci�cation� This allows
experimentation to �nd an optimized con�guration for an actual processor
depending on chip size and expected application load�

��� Multithreaded Superscalar Base Processor

While the multiprocessor chip simply comprises two or more base processors
of a speci�c issue bandwidth� the multithreaded superscalar approach is more
complicated� In the multithreaded superscalar processor �see Fig� ��� the
bu�ers of the control pipeline �fetch bu�er� dispatch bu�er� and completion
bu�er� and the register set are duplicated according to the number of hosted
threads� Each thread has its own set of bu�ers and registers� thus running
logically independent of the other threads� The processor is designed scalably
with respect to the number of hosted threads� To the user of a multithreaded
superscalar processor� the machine behaves like a multiprocessor� Each thread
executes in its own context and is not a�ected by other threads�

Since the fetch and decode unit only work on a single thread per cycle� they
may also be duplicated to gain a higher throughput� Instructions are still
fetched and decoded in blocks of contiguous instructions� There is only a
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Figure �
 Multithreaded control pipeline

single dispatch and a single completion unit� The dispatch unit simultaneously
selects instructions from all independent dispatch bu�ers up to its maximum
issue bandwidth� The completion unit simultaneously retires any number of
instructions of any thread �up to a total maximum of retired instructions per
cycle��

The dispatch unit is not restricted with respect to the number of instruction
issues according to each thread� There is no �xed allocation between threads
and execution units in the multithreaded superscalar processor � in contrast to
the multiprocessor chip�

The rename registers� the branch target address cache� the data and the in�
struction cache are shared by all active threads� There is no �xed allocation
of any of these resources to speci�c threads� This allows for maximum perfor�
mance with any number of active threads�

Each thread executes in a separate register set� The contents of the registers
of a register set describe the state of a thread and form a so�called activation
frame� An activation frame is called active if the thread is currently executed
by the processor� i�e�� the activation frame is represented in a register set�
In addition to the active activation frames in the processor� we provide an
activation frame cache� which holds activation frames that are not currently
scheduled for execution� The activation frames in the activation frame cache
and in the register sets can be interchanged without a signi�cant penalty� By
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adding a cache of not currently running threads� the machine can be virtualized
to an arbitrary number of threads� When a thread performs an instruction with
long latency� like an external synchronization� the thread can be preempted by
a �ready� thread in the cache�

The activation frame cache is also used to implement a derivation of a register
window technique� A new activation frame is created for every subprogram
activation� thereby signi�cantly reducing the number of memory accesses to
the data cache�

The execution units are expanded by a thread control unit that is responsible
for creation and deletion of threads� for synchronization and communication
between threads� Except for the load��store and the thread control unit� each
kind of execution unit may be arbitrarily duplicated�

Within a multithreaded processor latencies are almost all covered by other
threads� so the penalty created by a static branch prediction should not a�ect
average executions per cycle�

��� Simulator and Application Workload

Starting with the superscalar base processor we conducted a software simu�
lation ��	�� evaluating various con�gurations of the multithreaded superscalar
approach and of the multiprocessor chip models� All functional units were
simulated with correct cycle behaviour� We employed an instruction�driven
simulator� not a code tracer� so all execution related e�ects are simulated�
The simulator is either script�driven or interactive� All functional units can be
observed during the interactive execution in separate windows� which yields
the ability to investigate all run�time e�ects in detail� In script�driven mode�
versatile scripts can be de�ned to build up more complex test runs� Vari�
ous simulation results are collected for all units of the processor�s� and for
each thread� These reports can be automatically evaluated to create combined
results for several tests�

The simulation workload is generated by a con�gurable workload generator�
which creates random high level programs� and compiles them to our machine
language� The distribution of the machine instructions is similar to that gen�
erated from high level programs� This approach allows us to create workloads
for di�erent types of programs without the need for a complete compiler�





� Performance Results

For the performance results� presented in this section� we choose a multi�
threaded simulation work load that represents general purpose programs with�
out �oating�point instructions for a typical register window architecture�

Instruction type Average use

Integer ���
�
Complex�integer ����

Load �����
Store �	�
Branch �	�
�

Threadcontrol ����

With a single load�store unit �used in our approach� the chosen work load has
a theoretical maximum throughput of about �ve instructions per cycle �the
frequency of load and store instructions sums up to �	�� ���

For the simulation results presented below we used separate 
 KByte ��way
set�associative data and instruction caches with �� Byte cache lines� a cache �ll
burst rate of �������� a fully�associative ���entry branch target address cache�
�� general purpose registers per thread� �� rename registers� a ���entry com�
pletion bu�er� up to � simple integer units� single complex integer� load�store�
branch� and thread control units� each execution unit with a ��entry reserva�
tion station� For the multithreaded approach we used two fetch units and two
decode units� The number of simultaneously fetched instructions and the sizes
of fetch and dispatch bu�ers are adjusted to the issue bandwidth� We vary the
issue bandwidth and the number of hosted threads in each case from � up to

� according to the total number of execution units�

The simulation results in Fig� � show that the single�threaded 
�issue su�
perscalar processor throughput only reaches a performance of ���� executed
instructions per cycle� The four�issue approach is slightly better with ���
�
due to instruction cache thrashing in the 
�issue case�

We also see in Fig� � that the range of linear gain� where the number of
executed instructions equals the issue bandwidth� ends at an issue bandwidth
of about four instructions per cycle� The throughput reaches a plateau at about
��� instructions per cycle� where neither increasing the number of threads nor
the issue bandwidth signi�cantly raises the number of executed instructions�
Moreover� the diagram on the right side in Fig� � shows a marginal gain in
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Figure �
 Average instruction throughput per processor

instruction throughput� when we advance from a �� to an 
�issue bandwidth�
This marginal gain is nearly independent of the number of threads in the
multithreaded processor�

Further simulations� shown in ����� identify the single load�store unit as a
principal bottleneck� The di�erence between the expected �ve instructions
per cycle and the simulation result of ��� is due to bubbles in the load�store
pipeline caused by data cache misses� Our multithreaded superscalar approach
reaches the maximum throughput that is possible with a single load�store unit�

To compare the multithreaded approach with a multiprocessor solution� we
show in Fig� � the results normalized in relation to the number of threads
�the number of instructions per cycle divided by the number of threads�� It
allows the comparison of parallel systems built up from basic multithreaded
or single�threaded processors� Fig� � also shows that a multiprocessor built
of single�threaded superscalar processors delivers the highest average instruc�
tion throughput per thread �note� the throughput per processor is shown in
Fig� ��� Each step to more parallel threads delivers less average through�
put per thread� It looks as if the multithreaded approach falls behind the
multiprocessor chip approach� However� the costs for the di�erent processor
con�gurations were not taken into account� The multiprocessor approach du�
plicates complete processors� whereas the multithreaded design only duplicates
parts of the processor�
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To verify our results� we compare them to Tullsen�s simulation in ���� We see
that our simulator produces di�erent results� especially viewing the 
�threaded

�issue superscalar approach ���
�
� in the table below�

Number�Threads�Issue� Tullsen�s simulation ��� Our simulation

���
�
� ���� ����

������ ���� ��	
������� ��
	 ��
	
�����
� ���� ���
������� ���� ����
������� ���� ����

The reason for the deviating results of Tullsen�s simulation follows from the
high number of execution units in Tullsen�s approach and from the limited
exploitation of instruction�level parallelism in the Alpha processor used as the
base of Tullsen�s simulation� Compared to our simulations� Tullsen�s approach
favours the multithreaded superscalar approach over the multiprocessor chip
approach� For example� up to eight load�store units are used in Tullsen�s
simulation� ignoring hardware costs and design problems �we do not believe
that it is cost�e�ective to implement 
 simultaneously working load�store units
within a multithreaded superscalar processor��

It is obvious that di�erent processor con�gurations can only be compared if a
measurement for their costs �e�g� in chip space� is used� Otherwise� unrealistic
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processors are compared with each other� simply stating that more units result
in more performance�

To get a rough measurement of the costs for a processor con�guration� we
propose a formula based on the Power PC �	� �oor plan� The formula expresses
hardware costs based on chip space usage per unit� Estimated costs per unit�

Unit type Estimated cost

Integer unit �
Load�Store unit �

Fetch and decode unit �
Branch unit �

Caches �
Registers ��Number of Threads

Completion unit ��Issue Bandwidth
Dispatch unit ��Number of Threads�Issue Bandwidth

The formula is only a rule of thumb� The formula for the dispatch unit is based
on the required interconnections between the dispatch unit� the register sets�
and the execution units�
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Figure 
 Average instruction throughput in relation to chip costs

As each thread�s register set and dispatch queue has to be connected with all
execution units� the required chip space is proportional to the product of the
number of hosted threads and the issue bandwidth of the processor�
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Fig� � displays the instructions per cycle in relation to the hardware costs of
a speci�c processor con�guration� The solution with four threads and issue
bandwidth four shows the best performance�cost relation� However� this ob�
servation is application and design speci�c� The advantage of multithreading
is highly dependent on the ratio of load�store instructions to other instruc�
tions in the workload� Also the chip costs change with di�erent architectural
decisions�

� Conclusion

This paper examined the multithreaded superscalar processor in comparison to
the multiprocessor chip approach� taking performance and hardware costs into
consideration� For our research study we used a simulator for multithreaded
processors based on the PowerPC �	��

While the single�threaded 
�issue superscalar processor only reaches a through�
put of about ����� the 
�threaded 
�issue superscalar processor executes ����
instructions per cycle �the load�store frequency in the work load sets the the�
oretical maximum to � instruction per cycle�� Increasing the issue bandwidth
from � to 
 yields only a marginal gain in instruction throughput � a result that
is nearly independent of the number of threads in the multithreaded processor�

The multiprocessor chip approach with 
 single�threaded scalar processors
reaches ��	 instructions per cycle� Using the same number of threads� the
multiprocessor chip reaches a higher throughput than the multithreaded su�
perscalar approach �refer to the previous paragraph�� However� if we take
the chip costs into consideration� a ��threaded ��issue superscalar processor
outperforms a multiprocessor chip built from single�threaded processors by a
factor of ��
 in performance�cost relation�
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