Identifying Bottlenecks in a Multithreaded
Superscalar Microprocessor

Ulrich Sigmund® and Theo Ungerer?

! VIONA Development GmbH, Karlstr. 27, D-76133 Karlsruhe, Germany
2 University of Karlsruhe, Dept. of Computer Design and Fault Tolerance, D-76128
Karlsruhe, Germany

Abstract. This paper presents a multithreaded superscalar processor
that permits several threads to issue instructions to the execution units
of a wide superscalar processor in a single cycle. Instructions can simul-
taneously be issued from up to 8 threads with a total issue bandwidth
of 8 instructions per cycle. Our results show that the 8-threaded 8-issue
processor reaches a throughput of 4.2 instructions per cycle.

1 Introduction

Current microprocessors utilize instruction-level parallelism by a deep processor
pipeline and by the superscalar technique that issues up to four instructions
per cycle from a single thread. VLSI-technology will allow future generations of
microprocessors to exploit instruction-level parallelism up to 8 instructions per
cycle, or more. However, the instruction-level parallelism found in a conventional
instruction stream is limited.

The solution is the additional utilization of more coarse-grained parallelism.
The main approaches are the multiprocessor chip and the multithreaded proces-
sor. The multiprocessor chip integrates two or more complete processors on a
single chip. Therefore every unit of a processor is duplicated and used indepen-
dently of its copies on the chip. In contrast, the multithreaded processor stores
multiple contexts in different register sets on the chip. The functional units are
multiplexed between the threads that are loaded in the register sets. Multi-
threaded processors tolerate memory latencies by overlapping the long-latency
operations of one thread with the execution of other threads - in contrast to
the multiprocessor chip approach. Simultaneous multithreading [1] combines a
wide issue superscalar instruction dispatch with multithreading. Instructions are
simultaneously issued from several instruction queues. Therefore the issue slots
of a wide issue processor can be filled by operations of several threads.

While the simultaneous multithreading approach surveys enhancements of
the Alpha 21164 processor, our multithreaded superscalar approach is based on
a simplified PowerPC 604 processor [2]. Both approaches, however, are similar
in their instruction issuing policy. This paper focuses on the identification and
avoidance of bottlenecks in the multithreaded superscalar processor. Further
simulations, shown in [3], install the same base processor in a multiprocessor
chip and compare it with the multithreaded superscalar approach.



2 The Multithreaded Superscalar Processor Model

Our multithreaded superscalar processor uses various kinds of modern microar-
chitecture techniques as e.g. branch prediction, in-order dispatch, independent
execution units with reservation stations, rename registers, out-of-order execu-
tion, and in-order completion. We apply the full instruction pipeline of the Pow-
erPC 604, and extend it to employ multithreading. However, we simplify the
instruction set (using an extended DLX [4] instruction set instead), use static
instead of dynamic branch prediction, and renounce the floating point unit. The
processor model is designed scalable: the number of parallel threads, the sizes
of internal buffers, register sets and caches, the number and type of execution
units are not limited by any architectural specification.

We conducted a software simulation evaluating various configurations of the
multithreaded superscalar processor. For the simulation results presented below
we used separate 8 KByte 4-way set-associative data and instruction caches with
32 Byte cache lines, a cache fill burst rate of 4-2-2-2, a fully-associative 32-entry
branch target address cache, 32 general purpose registers per thread, 64 rename
registers, a 12-entry completion queue, 4 simple integer units, single complex
integer, load/store, branch, and thread control units, each execution unit with a
4-entry reservation station. The number of simultaneously fetched instructions
and the sizes of fetch and dispatch buffers are adjusted to the issue bandwidth.
We vary the issue bandwidth and the number of hosted threads in each case
from 1 up to 8, according to the total number of execution units.

We choose a multithreaded simulation work load that represents general pur-
pose programs without floating-point instructions for a typical register window
architecture. We assume 63.8% integer, 1.1% complex integer, 13.2% load, 7.0%
store, 10.8% branch, and 4.1% thread control instructions.

3 Performance Results

The simulation results in Fig. 1 (left) show that the single-threaded 8-issue
superscalar processor throughput (measured in average instructions per cycle)
only reaches a performance of 1.14 executed instructions per cycle. The four-
issue approach is slightly better with 1.28, due to instruction cache thrashing in
the 8-issue case.

Increasing the number of threads from which instructions are simultaneously
issued to the 8 issue slots also increases performance. The throughput reaches a
plateau at about 3.2 instructions per cycle, where neither increasing the number
of threads nor the issue bandwidth significantly raises the number of executed
instructions. When issue bandwidth is kept small (1 to 4 instructions per cycle),
and four to eight threads are regarded, we expect a full exploitation of the issue
bandwidth. As seen in Fig. 1(left), however, the issue bandwidth is only utilized
by about 75%. Even a highly multithreaded processor seems unable to fully
exploit the issue bandwidth. A further analysis reveales the single fetch and
decode units as bottlenecks, leading to starvation of the dispatch unit.



Therefore we apply two independent fetch and two decode units, the simula-
tion results are shown in Fig. 1(right). The gradients of the graphs representing
the multithreaded approaches are much steeper, indicating an increased through-
put. The processor throughput in an 8-threaded 8-issue processor is about four
times higher than in the single threaded 8-issue case. However, the range of lin-
ear gain, where the number of executed instructions equals the issue bandwidth,
ends at an issue bandwidth of about four instructions per cycle. The throughput
reaches a plateau at about 4.2 instructions per cycle, where neither increasing
the number of threads nor the issue bandwidth significantly raises the number
of executed instructions. Moreover, the diagram on the right side in Fig. 1 shows
a marginal gain in instruction throughput, when we advance from a 4- to an
8-issue bandwidth. This marginal gain is nearly independent of the number of
threads in the multithreaded processor.

Instructions per cycle

Number of
threads

Number of
threads

Issue bandwidth Issue bandwidth

Fig. 1. Average instruction throughput per processor with one fetch and one decode
unit and with with two fetch and two decode units

Further simulations (see Fig. 2) showed that a performance increase is not
yielded when the number of slots in the completion queue is increased over the
16 slots assumed in the simulations above. Instruction execution is limited by
true data dependencies and by control dependencies that cannot be removed.
Also four write-back ports and 16 rename registers seem appropriate.

The load/store unit and the memory subsystem remain as the main bottle-
neck that may potentially be removed by a different configuration. The load /store
unit is limited to the execution of a single instruction per cycle. Duplication
of the load/store unit definitely increases performance. However, two or more
load/store units that access a single data cache are difficult to implement because
of consistency and thrashing problems. Using an instruction mix with 20.2% load
and store instructions potentially allows a processor throughput of five instead

Instructions per cycle



of the measured 4.2 instructions per cycle with a single load/store unit.

56 56

Rename register

. 2 2
Completion queue 8 32 1 Writeback ports

Fig. 2. Sources of unused issue slots

To evaluate if a different memory configuration might increase the through-
put, we simulated different cache sizes, cache line sizes (from 8 to 128 bytes),
cache schemes (direct mapped, set associative), workloads and numbers of active
threads. The simulations show that our simulated processor is able to completely
hide all latencies caused by cache refills (4-2-2-2) by its multithreaded execution
model. The multithreaded superscalar processor reaches the maximum through-
put that is possible with a single load/store unit. Penalties caused by data cache
misses are responsible for the difference to the theoretical maximum throughput
of five instructions per cycle.

4 Conclusion

This paper surveyed bottlenecks in a multithreaded superscalar processor, based
on the PowerPC 604 microarchitecture, taking various configurations into con-
sideration. Using an instruction mix with 20.2% load and store instructions the
performance results show for an 8-issue processor with four to eight threads that
two instruction fetch and two decode units, four integer units, 16 rename regis-
ters, four register ports, and a completion queue with 12 slots are sufficient. The
single load/store unit proves as the principal bottleneck because it cannot easily
be duplicated. The multithreaded superscalar processor (8-threaded 8-issue) is
able to completely hide latencies caused by 4-2-2-2 burst cache refills. It reaches
the maximum throughput of 4.2 instructions per cycle that is possible with a
single load/store unit.



References

1. Tullsen, D. E. , Eggers, S. J., Levy, H. M.: Simultaneous Multithreading: Maximizing
On-Chip Parallelism. The 22nd Ann. Int. Symp. on Comp. Arch. (1995) 392-403

2. Song, S. P. , Denman, M.,Chang, J.: The PowerPC 604 RISC Microprocessor. IEEE
Micro, Vol. 14, No. 5 (1994) 8-17

3. Sigmund, U., Ungerer, Th.: Evaluating a Multithreaded Superscalar Microprocessor
vs. a Multiprocessor Chip. 4th PASA Workshop, Juelich, World Sc. Publ. (1996)

4. Hennessy, J. L., Patterson, D. A.: Computer Architecture a Quantitative Approach,
San Mateo (1996)

This article was processed using the I#TEX macro package with LLNCS style



