
Identifying Bottlenecks in a Multithreaded

Superscalar Microprocessor

Ulrich Sigmund� and Theo Ungerer�

� VIONA Development GmbH� Karlstr� ��� D����		 Karlsruhe� Germany
� University of Karlsruhe� Dept� of Computer Design and Fault Tolerance� D�����


Karlsruhe� Germany

Abstract� This paper presents a multithreaded superscalar processor
that permits several threads to issue instructions to the execution units
of a wide superscalar processor in a single cycle� Instructions can simul�
taneously be issued from up to 
 threads with a total issue bandwidth
of 
 instructions per cycle� Our results show that the 
�threaded 
�issue
processor reaches a throughput of ��� instructions per cycle�

� Introduction

Current microprocessors utilize instruction�level parallelism by a deep processor
pipeline and by the superscalar technique that issues up to four instructions
per cycle from a single thread� VLSI�technology will allow future generations of
microprocessors to exploit instruction�level parallelism up to � instructions per
cycle� or more� However� the instruction�level parallelism found in a conventional
instruction stream is limited�

The solution is the additional utilization of more coarse�grained parallelism�
The main approaches are the multiprocessor chip and the multithreaded proces�
sor� The multiprocessor chip integrates two or more complete processors on a
single chip� Therefore every unit of a processor is duplicated and used indepen�
dently of its copies on the chip� In contrast� the multithreaded processor stores
multiple contexts in di�erent register sets on the chip� The functional units are
multiplexed between the threads that are loaded in the register sets� Multi�
threaded processors tolerate memory latencies by overlapping the long�latency
operations of one thread with the execution of other threads � in contrast to
the multiprocessor chip approach� Simultaneous multithreading ��	 combines a
wide issue superscalar instruction dispatch with multithreading� Instructions are
simultaneously issued from several instruction queues� Therefore the issue slots
of a wide issue processor can be 
lled by operations of several threads�

While the simultaneous multithreading approach surveys enhancements of
the Alpha ����
 processor� our multithreaded superscalar approach is based on
a simpli
ed PowerPC ��
 processor ��	� Both approaches� however� are similar
in their instruction issuing policy� This paper focuses on the identi
cation and
avoidance of bottlenecks in the multithreaded superscalar processor� Further
simulations� shown in ��	� install the same base processor in a multiprocessor
chip and compare it with the multithreaded superscalar approach�



� The Multithreaded Superscalar Processor Model

Our multithreaded superscalar processor uses various kinds of modern microar�
chitecture techniques as e�g� branch prediction� in�order dispatch� independent
execution units with reservation stations� rename registers� out�of�order execu�
tion� and in�order completion� We apply the full instruction pipeline of the Pow�
erPC ��
� and extend it to employ multithreading� However� we simplify the
instruction set �using an extended DLX �
	 instruction set instead�� use static
instead of dynamic branch prediction� and renounce the �oating point unit� The
processor model is designed scalable� the number of parallel threads� the sizes
of internal bu�ers� register sets and caches� the number and type of execution
units are not limited by any architectural speci
cation�

We conducted a software simulation evaluating various con
gurations of the
multithreaded superscalar processor� For the simulation results presented below
we used separate � KByte 
�way set�associative data and instruction caches with
�� Byte cache lines� a cache 
ll burst rate of 
������� a fully�associative ���entry
branch target address cache� �� general purpose registers per thread� �
 rename
registers� a ���entry completion queue� 
 simple integer units� single complex
integer� load�store� branch� and thread control units� each execution unit with a

�entry reservation station� The number of simultaneously fetched instructions
and the sizes of fetch and dispatch bu�ers are adjusted to the issue bandwidth�
We vary the issue bandwidth and the number of hosted threads in each case
from � up to �� according to the total number of execution units�

We choose a multithreaded simulation work load that represents general pur�
pose programs without �oating�point instructions for a typical register window
architecture� We assume ����� integer� ���� complex integer� ����� load� ����
store� ����� branch� and 
��� thread control instructions�

� Performance Results

The simulation results in Fig� � �left� show that the single�threaded ��issue
superscalar processor throughput �measured in average instructions per cycle�
only reaches a performance of ���
 executed instructions per cycle� The four�
issue approach is slightly better with ����� due to instruction cache thrashing in
the ��issue case�

Increasing the number of threads from which instructions are simultaneously
issued to the � issue slots also increases performance� The throughput reaches a
plateau at about ��� instructions per cycle� where neither increasing the number
of threads nor the issue bandwidth signi
cantly raises the number of executed
instructions� When issue bandwidth is kept small �� to 
 instructions per cycle��
and four to eight threads are regarded� we expect a full exploitation of the issue
bandwidth� As seen in Fig� ��left�� however� the issue bandwidth is only utilized
by about ���� Even a highly multithreaded processor seems unable to fully
exploit the issue bandwidth� A further analysis reveales the single fetch and
decode units as bottlenecks� leading to starvation of the dispatch unit�



Therefore we apply two independent fetch and two decode units� the simula�
tion results are shown in Fig� ��right�� The gradients of the graphs representing
the multithreaded approaches are much steeper� indicating an increased through�
put� The processor throughput in an ��threaded ��issue processor is about four
times higher than in the single threaded ��issue case� However� the range of lin�
ear gain� where the number of executed instructions equals the issue bandwidth�
ends at an issue bandwidth of about four instructions per cycle� The throughput
reaches a plateau at about 
�� instructions per cycle� where neither increasing
the number of threads nor the issue bandwidth signi
cantly raises the number
of executed instructions� Moreover� the diagram on the right side in Fig� � shows
a marginal gain in instruction throughput� when we advance from a 
� to an
��issue bandwidth� This marginal gain is nearly independent of the number of
threads in the multithreaded processor�

1 2 3 4 5 6 7 81

3
5

7

0

1

2

3

4

5

6

7

8

In
st

ru
ct

io
n

s 
p

er
 c

yc
le

Issue bandwidth

Number of 
threads

1 2 3 4 5 6 7 81

3
5

7

0

1

2

3

4

5

6

7

8

In
st

ru
ct

io
n

s 
p

er
 c

yc
le

Issue bandwidth

Number of 
threads

Fig� �� Average instruction throughput per processor with one fetch and one decode
unit and with with two fetch and two decode units

Further simulations �see Fig� �� showed that a performance increase is not
yielded when the number of slots in the completion queue is increased over the
�� slots assumed in the simulations above� Instruction execution is limited by
true data dependencies and by control dependencies that cannot be removed�
Also four write�back ports and �� rename registers seem appropriate�

The load�store unit and the memory subsystem remain as the main bottle�
neck that may potentially be removed by a di�erent con
guration� The load�store
unit is limited to the execution of a single instruction per cycle� Duplication
of the load�store unit de
nitely increases performance� However� two or more
load�store units that access a single data cache are di�cult to implement because
of consistency and thrashing problems� Using an instruction mix with ����� load
and store instructions potentially allows a processor throughput of 
ve instead



of the measured 
�� instructions per cycle with a single load�store unit�

4 8 12 16 20 24 28 32

8

24

40

56

0
0,5

1
1,5

2
2,5

3

3,5

4

4,5

Completion queue 1 2 3 4 5 6 7 8
8

24

40

56

0
0,5
1
1,5
2
2,5

3

3,5

4

4,5

Writeback ports

Rename register

Fig� �� Sources of unused issue slots

To evaluate if a di�erent memory con
guration might increase the through�
put� we simulated di�erent cache sizes� cache line sizes �from � to ��� bytes��
cache schemes �direct mapped� set associative�� workloads and numbers of active
threads� The simulations show that our simulated processor is able to completely
hide all latencies caused by cache re
lls �
������� by its multithreaded execution
model� The multithreaded superscalar processor reaches the maximum through�
put that is possible with a single load�store unit� Penalties caused by data cache
misses are responsible for the di�erence to the theoretical maximum throughput
of 
ve instructions per cycle�

� Conclusion

This paper surveyed bottlenecks in a multithreaded superscalar processor� based
on the PowerPC ��
 microarchitecture� taking various con
gurations into con�
sideration� Using an instruction mix with ����� load and store instructions the
performance results show for an ��issue processor with four to eight threads that
two instruction fetch and two decode units� four integer units� �� rename regis�
ters� four register ports� and a completion queue with �� slots are su�cient� The
single load�store unit proves as the principal bottleneck because it cannot easily
be duplicated� The multithreaded superscalar processor ���threaded ��issue� is
able to completely hide latencies caused by 
������ burst cache re
lls� It reaches
the maximum throughput of 
�� instructions per cycle that is possible with a
single load�store unit�



References

�� Tullsen� D� E� � Eggers� S� J�� Levy� H� M�� Simultaneous Multithreading� Maximizing
On�Chip Parallelism� The ��nd Ann� Int� Symp� on Comp� Arch� 
����� 	�����	

�� Song� S� P� � Denman� M��Chang� J�� The PowerPC ��� RISC Microprocessor� IEEE
Micro� Vol� ��� No� � 
����� 
���

	� Sigmund� U�� Ungerer� Th�� Evaluating a Multithreaded Superscalar Microprocessor
vs� a Multiprocessor Chip� �th PASA Workshop� Juelich� World Sc� Publ� 
�����

�� Hennessy� J� L�� Patterson� D� A�� Computer Architecture a Quantitative Approach�
San Mateo 
�����

This article was processed using the LATEX macro package with LLNCS style


