
RThreads — a Uniform Interface for Parallel and Distributed Programming

Bernd Dreier Markus Zahn
University of Augsburg
Dept. of Mathematics

D-86135 Augsburg, Germany
fdreier,zahng@Informatik.Uni-Augsburg.DE

Theo Ungerer
University of Karlsruhe

Dept. of Computer Design and Fault Tolerance
D-76128 Karlsruhe, Germany

ungerer@Informatik.Uni-Karlsruhe.DE

Abstract

Several distributed systems and software packages allow
the use of workstation clusters as a virtual machine. In
general, the interfaces to these environments use different
programming paradigms for parallel and distributed com-
puting, e.g. multithreading within a multiprocessor work-
station and message passing or remote procedure calls for
distributed computing. Porting applications to other dis-
tributed systems is a difficult task and many different pro-
gramming paradigms have to be learned.

We introduce a uniform interface for parallel and dis-
tributed programming based on POSIX Threads. By pro-
viding a global data space we are able to raise the con-
cept of threads to a higher level of concurrency — threads
may be spread over several heterogeneous machines and are
therefore called remote threads (RThreads). Up to now, we
have implemented the RThread interface on top of PVM and
DCE.

1. Introduction

Today, computer networks grow in size and importance.
Workstations coupled by a high-speed network represent
an efficient parallel virtual machine. A workstation clus-
ter is often composed of multiprocessor workstations. The
processors within a multiprocessor workstation share global
memory, whereas a workstation cluster is coupled by a stan-
dard network, e.g. Ethernet, FDDI, or ATM. Synchroniza-
tion of parallel activities among the processors within a
workstation is done by access to global variables. In a work-
station cluster messages are sent via UNIX ports. Commu-
nication within a workstation is much faster than between
the workstations of a cluster. As a consequence, medium-
grained parallelism can be successfully exploited within a
multiprocessor workstation, but only very coarse-grained
parallel activities should be distributed over the worksta-
tions of a cluster. However, a network of dozens or hun-

dreds of workstations is much more powerful than a multi-
processor workstation with up to four processors, provided
that the algorithm is appropriate and a distributed environ-
ment is available.

Several distributed systems (e.g. DCE [5]) or software
packages (e.g. MPI [3, 8], PVM [7], Linda [1]) allow net-
worked computers to appear as a single concurrent compu-
tational resource. As a matter of fact, all these programming
environments require to learn a new programming model.
DCE supports threads and remote procedure calls, PVM is a
message passing system and Linda introduces global data in
a tuple space. The necessity to learn and apply completely
new paradigms often retards the entry to distributed comput-
ing. Furthermore, porting a distributed program from one
platform to another often requires a complete redesign of the
algorithm.

Most of the distributed programming environments sup-
port only a single level of parallelism. Only coarse-grained
parallelism between whole UNIX-processes is used in the
cases of PVM — the de-facto standard — and of MPI —
the future standard in scientific computing. The distribu-
tion of the processes over the network is obligatory. One
of the urgently wanted improvements is the introduction of
medium-grained parallelism using light-weight processes,
i.e. threads. DCE already supports medium-grained par-
allelism by POSIX Threads1 (PThreads), the distribution
of coarse-grained components by remote procedure calls is
also possible. However, two completely different program-
ming paradigms for different levels of granularity have to be
used.

To address these issues, we define a programming in-
terface, which covers medium- and coarse-grained paral-
lelism in a uniform manner. Medium-grained parallel com-
ponents are executed within a workstation, and the distribu-
tion of coarse-grained components over a workstation clus-
ter is possible. We decided to start from a well-known, al-
ready existing programming paradigm. Since we do not

1The POSIX series of standards include POSIX.1c, the standard for par-
allel, multithreaded programming.

want to provide a novel distributed environment, we imple-
mented the uniform programming interface on top of exist-
ing distributed systems.

Shared memory models provide an easy entry to parallel
programming. POSIX Threads are a wide-spread represen-
tative of this class. PThreads are also used in several modern
operating systems like Sun Solaris, OS/2, or Windows 95.

Therefore, we decided to base our programming inter-
face on the PThread model. Due to the underlying global
address space, POSIX Threads cannot be spread over dis-
tributed memory systems. Thus, we have to expand the
PThread model to enable distributed execution.

2. The RThread programming model

The well-known PThread model allows the creation of
light-weight processes running in the same address space.
There is no hierarchy of threads in this model, i.e. a newly
created thread is treated equally to the other threads of the
process, including the initiating one. The access to global
data can be synchronized by mutexes and condition vari-
ables, which are part of the common address space them-
selves. Since all threads execute in the same address space,
global data (including synchronization data) can be accessed
directly. Figure 1 illustrates the PThread model; all threads
execute in one process, which is represented by the dashed
line.

synchronization

pthread pthread

global data space

data

Figure 1. The PThread model

To expand the PThread model to distributed execution,
the distribution of parallel components (i.e. threads) must be
enabled. Due to the creation of such “remote threads”, we
call the introduced programming interface RThread model.
In the RThread model each RThread is running in its sep-
arate address space as shown in Figure 2. The different
processes (possibly residing on different hosts) are repre-
sented by dashed boxes like in figure 1. Since shared mem-
ory is not available in distributed heterogeneous computer
systems, the RThread model provides a global data space
for all RThreads. A buffer in each RThread’s address space

maps to parts of the global data space. All computation in
an RThread is done on its buffer. The exchange of data be-
tween buffer and global data space is achieved by explicit
read/write-operations of the RThread. Each read- or write-
operation can affect multiple data items.

Synchronization data is also part of the provided global
data space. In contrast to the other part of global data, syn-
chronization data is not buffered. The synchronization oper-
ations of the PThread model are expanded to work between
several machines.

bufferbuffer

rthread

global data space

data
synchronization

rthread

Figure 2. The RThread model

Notice that each RThread in figure 2 may contain sev-
eral PThreads, i.e. the RThread model introduces a hierar-
chical view: All PThreads of one RThread run in the same
address space and share the same buffer. A common global
data space is provided for all RThreads, which have equal
rights.

3. A PThread example

To illustrate programming with RThreads and their sim-
ilarity to programming with PThreads, we start this section
with the following PThread example program. In section 5
a solution for the same problem according to the introduced
RThread programming interface is described.

The sample program multiplies the two matrices m1 and
m2: A pool of five threads computes the result matrix m3
element by element. The global variables row and col in-
dicate the next element to be computed. After finishing the
computation of an entry, each thread fetches a new job by in-
crementingrow andcol. The fetching of a job is protected
by pthread mutex lock() to ensure mutual exclusion
during this process. The main thread waits for the end of all
five threads, afterwards the result could be used for further
computations.

2

int m1[200][200], m2[200][200], m3[200][200];
int row=0, col=0;

pthread_mutex_t lock; /* protects row and col */
pthread_t worker_threads[5];

void *worker(void *dummy)
{
int myrow, mycol, i, result;

while (pthread_mutex_lock(&lock), row<200)
{
myrow=row;
mycol=col++;
if (col == 200)
{
col = 0;
row++;

}
pthread_mutex_unlock(&lock);

result = 0;
for (i=0; i<200; i++)
result += (m1)[myrow][i] * (m2)[i][mycol];

(m3)[myrow][mycol] = result;
}
pthread_mutex_unlock(&lock);
pthread_exit(0);

}

void main(void)
{
int i, j;

pthread_mutex_init(&lock,
pthread_mutexattr_default);

/* initialization of m1 and m2 left out */

for (i=0; i < 5; i++)
pthread_create(&worker_threads[i],
pthread_attr_default,
(pthread_startroutine_t) worker, NULL);

for (i=0; i < 5; i++)
pthread_join(worker_threads[i], NULL);

}

4. The RThread programming interface

As mentioned above, programming with RThreads is
very similar to PThread-like programming. We provide
an RThread equivalent for each PThread function (e.g.
rthread create(), rthread mutex lock())
and for each PThread type (e.g. rthread t,
rthread mutex t).
rthread create() spawns a thread on a possibly re-

mote host. The RThread synchronization operations behave
like their PThread equivalents. However, the synchroniza-
tion is performed between threads on different machines.

We introduce two additional functions to exchange global
data between the RThread’s buffer and the global data space:
rthread read() and rthread write(). For exam-
ple, the single data item row is copied from the global data

space into the RThread’s buffer (and vice versa) by the fol-
lowing function calls:

rthread_read(RTHREAD_long, RTHREAD_row, 0, 0, 1,
RTHREAD_DATA_DONE);

rthread_write(RTHREAD_long, RTHREAD_row, 0, 0,
1, RTHREAD_DATA_DONE);

The first parameter defines the data type, followed by the
variable name, a first index, a last index and a stride, finished
by RTHREAD DATA DONE. The data type is specified to al-
low data conversion in heterogeneous networks. Data types
and variables are named with an RTHREAD prefix to use la-
bels defined by the RThread package (see section 6). First
index, last index and a stride can be used to access parts of
an array. For example, the following statement reads the k-
th column of the n� n matrix m2.

rthread_read(RTHREAD_long, RTHREAD_m2, k,
(n-1)*n + k, n, RTHREAD_DATA_DONE);

Due to a variable argument list, multiple read accesses
can be combined in a single rthread read() statement:

rthread_read(RTHREAD_long, RTHREAD_row, 0, 0, 1,
RTHREAD_long, RTHREAD_col, 0, 0, 1,
RTHREAD_DATA_DONE);

Instead of terminating the data access by RTHREAD DA-
TA DONE, multiple rthread read()s can be grouped
using RTHREAD DATA CONTINUE.

Writing to the global data space is done with
rthread write() accordingly. The initializiation
of the RThread package is performed by the functions
rthread main init() and rthread remote -
init(). They are described in section 5.

5. An RThread example

For an RThread-implementation of the matrix multi-
plication algorithm described in section 3, two programs
must be created: The “main thread program” and the
“remote thread program”. Both have to define buffer
space for global data and initialize the RThread pack-
age by calling rthread main init() respectively
rthread remote init(). The main thread program
has to pass the file name of the remote thread program
to the initialization function. According to the PThread
example program given above, it starts and joins the remote
threads. The function worker() from the former example
program is left out, because it is not used as a start function
in a local PThread.

/* main thread program */
#include "rthread.h" /* additional includes */
#include "matmul_rthread.h"

3

/* buffer */
int m1[200][200], m2[200][200], m3[200][200];
int row=0, col=0; /* buffer */

rthread_mutex_t lock; /* protects row and col */
rthread_t worker_threads[5];

void main(void)
{
int i, j;

/* initialize rthread package */
rthread_main_init("matmul_remote");

rthread_mutex_init(RTHREAD_lock,
rthread_mutexattr_default);

/* initialization of m1 and m2 left out */

for (i=0; i < 5; i++)
rthread_create(&worker_threads[i],
rthread_attr_default, RTHREAD_worker,
(rthread_addr_t) NULL);

for (i=0; i < 5; i++)
rthread_join(worker_threads[i], NULL);

}

In the “remote thread program” buffer space for all or part
of the global data is allocated similar to the “main thread
program”. The worker() function of the “remote thread
program” corresponds to the start function of the PThread
example program given in section 3. In addition, explicit
read or write statements have to preserve the consistency of
buffer and global data space.

Therefore, in the following example program the first
read access to the variable col in the local buffer is
preceded by rthread read(..., RTHREAD col,
...). The modified value is written to global data space by
rthread write(..., RTHREAD col, ...) af-
terwards. Mutual exclusion of threads accessing col con-
currently is ensured by rthread mutex lock() cor-
responding to pthread mutex lock() in the PThread
program.

/* remote thread program */
#include "rthread.h"
#include "matmul_rthread.h"

/* buffer */
int m1[200][200], m2[200][200], m3[200][200];
int row=0, col=0; /* buffer */

rthread_mutex_t lock; /* protects row and col */
rthread_t worker_threads[5];

void *worker(void *dummy)
{
int myrow, mycol, i, result;

while (rthread_mutex_lock(RTHREAD_lock),
rthread_read(RTHREAD_long, RTHREAD_row,
0, 0, 1, RTHREAD_DATA_DONE),

row<200)
{

myrow=row;
rthread_read(RTHREAD_long, RTHREAD_col, 0,

0, 1, RTHREAD_DATA_DONE);
mycol=col++;
rthread_write(RTHREAD_long, RTHREAD_col, 0,

0, 1, RTHREAD_DATA_DONE);
if (col == 200)
{

col = 0,
rthread_write(RTHREAD_long, RTHREAD_col,

0, 0, 1, RTHREAD_DATA_DONE);
row++;
rthread_write(RTHREAD_long, RTHREAD_row,

0, 0, 1, RTHREAD_DATA_DONE);
}
rthread_mutex_unlock(RTHREAD_lock);

rthread_read(RTHREAD_long, RTHREAD_m1,
myrow*200, myrow*200 + 200-1, 1,
RTHREAD_long, RTHREAD_m2, mycol,
(200-1)*200 + mycol, 200,
RTHREAD_DATA_DONE);

result = 0;
for (i=0; i<200; i++)

result += (m1)[myrow][i] * (m2)[i][mycol];
(m3)[myrow][mycol] = result;
rthread_write(RTHREAD_long, RTHREAD_m3,

myrow*200 + mycol, myrow*200 + mycol, 1,
RTHREAD_DATA_CONTINUED);

}
rthread_write(RTHREAD_DATA_DONE);
rthread_mutex_unlock(RTHREAD_lock);
rthread_exit(0);

}

int main (void)
{

rthread_remote_init();
exit(0);

}

6. Implementation

The RThread-functions are implemented in libraries.
For compilation of RThread-programs an additional
application-specific header file will be created automati-
cally. Each label beginning with RTHREAD_ which occurs
in a RThread function call is added to the header file.
The header contains a mapping between the global data
space and the buffers. A label represents an address of
an element in the global data space. The header file maps
these addresses to local addresses in the buffer of the given
RThread. The RTHREAD prefixed variable and function
names are required to get unique identifiers valid in the
main and the remote threads, where the identifiers naturally
have different addresses.

In our current implementation the main thread program
behaves like a master program. It contains the global data
space, serves the read and write accesses to the global data
space, executes the synchronization operations and starts
processes embedding the remote threads.

4

The introduced RThread programming interface is inde-
pendent of the underlying distributed systems. These are
used for network transport and start of remote programs
only. Up to now, we have successfully implemented the
RThread-functions on DCE and PVM platforms. The use
of different libraries enables the execution of the same pro-
gram either in a PVM or DCE environment. In the DCE
implementation the remote threads execute read, write and
synchronization operations by remote procedure calls to the
master. In the case of PVM this communication is real-
ized by its message passing facilities. PVM already supports
dynamic creation of remote processes. To accomplish this
task in the DCE environment, we developed a runtime sys-
tem [2], which allows for load balancing additionally.

7. How to get efficient programs

An important aspect to get efficient programs is the
reduction of network traffic caused by read and write
operations. Usually, performance can be increased by
transferring a higher amount of data in a single net-
work transaction instead of several transactions with less
data. rthread read() and rthread write() are
designed for combining multiple data accesses in a single
network transaction. The parameters “first index”, “last in-
dex” and “stride” allow the access to parts of arrays. A
variable argument list supports grouping of multiple data
requests in a single function call. Furthermore, the use
of RTHREAD DATA CONTINUED enables the collection of
data accesses across several function calls, which is ter-
minated by RTHREAD_DATA_DONE. This feature is espe-
cially useful in loops (see example program).

The programmer should carefully consider data depen-
dencies between different RThreads. Consistency of buffer
and global data space is only ensured by explicit use of
rthread read() and rthread_write(). The pro-
grammer is able to set his own level of consistency [4, 6].
Therefore, the knowledge of the program semantics should
be employed by the programmer to group or collect data ac-
cesses, thereby increasing performance.

rthreadrthread

Figure 3. Combining RThreads and PThreads

It is possible to mix RThreads and PThreads in a par-
allel program, i.e. RThreads may contain several PThreads
which are executed in the RThread’s process (see figure 3).
Therefore, tasks with high communication needs may run

simultaneously without being distributed. This is a great
improvement compared to systems like PVM where paral-
lelism forces distribution. Calling functions of the RThread-
libraries is allowed to the PThreads, too: In Figure 3 a
PThread within an RThread creates another RThread. The
RThreads themselves are possibly spread over a heteroge-
neous workstation cluster. Thus, they should obviously be
constrained to computation intensive tasks with few commu-
nication needs.

8. Conclusions and further work

We introduced a model for parallel and distributed pro-
gramming as extension of the well-known POSIX-Threads.
The RThreads provide a uniform programming interface for
medium- and coarse-grained parallel programs. Coarse-
grained tasks can be distributed to remote hosts. Our current
implementations are based on PVM and DCE, as represen-
tatives of a message-passing environment respectively of a
RPC-based distributed operating system. Implementations
on other distributed platforms (e.g. MPI) are in progress.
Testing of the DCE- and PVM-based implementations with
several sample programs is finished. The examples show
good speedup. More complex applications will show the
ease of programming and give realistic results on the effi-
ciency of the implementations.

Our programming environment relies on read and write
accesses explicitly set by the programmer. In future, a pre-
compiler may help optimizing global data exchange. More-
over, we survey automatic transformation of multithreaded
programs into our RThread model.

References

[1] N. Carriero, D. Gelernter, T. Mattson, and A. Sherman. The
Linda alternative to message-passing systems. Parallel Com-
puting, 20:633–655, April 1994.

[2] B. Dreier and M. Zahn. Entwicklung einer verteilten Pro-
grammierumgebung für das DCE. Master’s thesis, Universität
Augsburg, October 1993.

[3] M. P. I. Forum. Mpi: A message-passing interface standard.
Technical report, University of Tennessee, June 1995.

[4] K. Hwang. Advanced Computer Architecture. McGraw-Hill,
New York, 1993.

[5] H. W. Lockhart Jr. OSF DCE Guide to Developing Distributed
Applications. McGraw-Hill, Inc., 1994.

[6] B. Nitzberg and V. Lo. Distributed shared memory: A survey
of issues and algorithms. IEEE Computer, pages 52–60, Au-
gust 1991.

[7] V. Sunderam, A. Geist, J. Dongarra, and R. Mancheck. The
PVM concurrent computing system: Evolution, experiences,
and trends. Parallel Computing, 20:531–546, April 1994.

[8] D. Walker. The design of a standard message-passing inter-
face for distributed memory concurrent computers. Parallel
Computing, 20:657–673, April 1994.

5

