AC/3 V1.00
A Tool for Automatic Error Correction
of Combinatorial Circuits®

Dirk W. Hoffmann and Thomas Kropf

Institute for Computer Design and Fault Tolerance,
Prof. D. Schmid
Universitat Karlsruhe, D-76128 Karlsruhe, Germany
hoff@ira.uka.de kropf@ira.uka.de
http://goethe.ira.uka.de/hvg

Abstract

AC/3 is a tool for performing automatic error correction in combina-
torial circuits. Two circuits must be provided to the system where one
serves as the specification circuit and the other one as the current imple-
mentation. AC/3 tries to prove equivalence between both designs and
performs automatic error correction if equivalence does not hold. The tool
is based on the rectification theory developed in [7].

keywords: Automatic error correction, equivalence checking, BDDs

1 Introduction

In recent years, formal verification techniques [6] have become more and more
sophisticated and for several application domains they have already found their
way into industrial environments. Boolean equivalence checking [8, 1, 9], mostly
based on BDDs [4, 5], is unquestionably one of these techniques and usually
applied during the optimization process to ensure that an optimized circuit still
exhibits the same behavior as the original “golden” design. Using BDDs for
representing Boolean functions, the verification task mainly consists of creating
a BDD for the Boolean function of each output-signal. Then, due to the normal
form property of BDDs, both signals implement the same function if and only
if they have the same BDD representation. Hence, equivalence can be decided
by simply comparing both BDDs.

A lot of professional tools have been proposed in recent years and they have
already been able to prove their practical usefulness in a short period of time.
Many companies are starting to apply equivalence checking and in a few years
this method will undoubtedly be a fully accepted and integrated part of the
design cycle.

“This work is supported by the ESPRIT LTR Project 26241

A major requirement of formal methods to be applied successfully in indus-
trial environments is that a verification tool provides useful information even if
the verification task fails. Then, the application domain of formal verification
is no longer restricted to approve correctness of a specific design, it can also
serve as a powerful debugging technique and therefore helps speeding up the
whole design cycle.

If equivalence checking fails, most verification tools only allow to compute a
counterexample in form of a combination of input values for which the output of
the optimized circuit differs from its specification. Therefore, it often remains
extremely hard to detect the error causing components. Counter examples as
produced by most equivalence checkers can only serve as hints for debugging a
circuit and a deeper understanding of the design is still essential.

In recent years, several approaches have been presented for extending equiv-
alence checkers with capabilities not only to compute counter examples, but to
locate and rectify errors in the provided design. The applicability of such a
method is strongly influenced by the following aspects:

e Which types of errors can be found ?
e Does the method scale to large circuits 7
e How many changes does the computed solution require 7

e Does the method perform well even if both circuits are structurally dif-
ferent 7

AC/3 is a tool for automatic error localization and rectification of combina-
torial circuits and based on the rectification theory developed in [7]. Basically,
AC/3 tries to determine the smallest component containing the erroneous parts
in the optimized circuit. Once such a component has been localized, a circuit
fix is computed and suggested to the designer.

The rectification method implemented in AC/3 does not assume any error
model and therefore, arbitrary design errors can be detected. Moreover, when
computing a circuit rectification, AC/3 tries to incorporate as many sub-parts
of the circuit as possible in order to minimize the number of modifications.
The underlying method directly works on BDDs, and during the rectification
process, only the abstract BDD representation of the specification-circuit is con-
sidered. Thus, the success of our algorithm does not depend on any structural
similarity between the implementation and the specification.

This paper is organized as follows: In Section 2, we provide a quick tutorial
on AC/3. The basic steps for rectifying a circuit are illustrated by a small
example. Section 3 describes the tools in more detail. A formal definition of
the input language including a formally defined semantics is given in Section 3.1
and 3.2. Section 3.3 provides a complete description of all available commands.
The currently supported flags are described in Section 3.4. In Section 4, we
give a brief description of additional tools of AC/3.

2 A Tutorial Example

This Section demonstrates the usage of AC/3 with a small tutorial example.
A complete and more detailed description of the system will be presented in
Section 3. To start AC/3, simply type

checker

at the Unix command prompt. If the system has been build successfully, AC/3
answers with the following message:

Circuit-Rectifier V1.00b, build on Fri Dec 11 19:05:33 1998
Dirk W. Hoffmann, (C)opyright 1998 University of Karlsruhe

Type ’7?’ for help...
Rectifier>

Whenever the prompt appears, typing 7 brings up a list of currently available
commands:

Options:

? : this help message

info : about this program

exit : exit program

settings : display current settings
impfile <file> select implementation file

specfile <file>
imppin <name>
specpin <name>

select specification file
select implementation out-pin
select specification out-pin

viewimp : view implementation file

viewspec : view specification file

prove start equivalence checking
profile : print st about parsed files
solution select a solution

viewsol : view selected solution

writesol : write rectified circuit to a file

set <flag> <value> :

set flag

possible flags and values:

caching {on|off}

tempcaching {on|off}

precomputation {on|off}

granularity {low|medium|high}

solution_type {main_inputs|gate_inputs|comp_inputs}

In this tutorial section, we will only use some of these commands. A complete
description of all commands can be found in Section 3.3.

COMPONENT CR_ADDER (al,a2,bl,b2) --> (cl,c2,c3)
COMPONENT H_ADDER (a,b) --> (sum,carry)

sum := (a <-> b);

carry := (a /\ b);

END
COMPONENT FULL_ADDER (a,b,c) --> (sum,carry)
sum := a XOR b XOR c;
carry := (a /\ b) \/ (@ /\ c) \/ (b /\ ¢);
END
H_ADDER.a := al;
H_ADDER.b := bl;

FULL_ADDER.a := a2;
FULL_ADDER.b := b2;
FULL_ADDER.c := H_ADDER.carry;
cl H_ADDER. sum;
c2 := FULL_ADDER. sum;
c¢3 := FULL_ADDER.carry;

END

Figure 1: Example: A two bit Carry-Ripple-Adder

For this tutorial session, we want to rectify a very small circuit implementing
a two-bit carry-ripple adder. The implementation circuit is shown in Fig. 1.
The circuit has four global input-signals a1, as, b1, b2 and three output signals
¢1, 2, c3. Using a half-adder (component H_ADDER) and a full-adder (component
FULL_ADDER), the circuit computes the sum (c3,co,c1) = (0,a2,a1) + (0, b2, by).

The specification is shown in Fig. 2. Unlike the implementation, the spec-
ification defines its output-signals by Boolean functions being derived directly
from the truth-table of Boolean addition.

To load the implementation circuit and the specification circuit, we use the
impfile and specfile command, respectively:

Rectifier> impfile carryripple.imp
Parsing file... done

COMPONENT CR_ADDER (al,a2,bl,b2) --> (cl,c2,c3)

cl := (al XOR bl);

c2 := (a2 XOR b2) XOR (a1l /\ bl);

c3 := (a2 /\ b2) \/ (a1l /\ b2 /\ b1) \/ (a1l /\ a2 /\ bl);
END

Figure 2: Specification for the 2-bit adder-circuit.

file carryripple.imp loaded...

Rectifier> specfile carryripple.spec
Parsing file... done
file carryripple.spec loaded...

carryripple.imp and varryripple.spec are the filenames on disk.

Now, we have to specify a pair of output signals we want to prove equivalent.
Output signals can be selected with the imppin and specpin command. For
now, we choose output c¢2 in both circuits.

Rectifier> imppin c2
Rectifier> specpin c2

With the settings command, we can display the current configuration:

Rectifier> settings

Specification:
File: carryripple.spec
Out-pin: CR_ADDER.c2
Implementation:
File: carryripple.imp
Out-pin: CR_ADDER.c2
Solution:

currently selected: <none>

Flags:

bdd caching : on

temporary caching : on

precompute solutions: off

solutions formulas reuse signals from : current component
search granularity : low

Before starting the rectification process, we change some of the flags. Since we
deal with a very small example, we set the precomputation flag.

Rectifier> set precomputation on

This causes the rectifier to immediately compute a solution whenever a recti-
fiable sub-component has been localized. If the flag is switched off, solution-
computation is delayed. Precomputation should only be switched on if the
designs to be rectified are not too large since it can considerably slow down the
rectification process. We also choose high search-granularity to find a maximum
number of solutions.

Rectifier> set granularity high

To invoke the equivalence checker, simply type prove. AC/3 now creates the
BDD representation for the selected output signals and checks for equivalence:

Rectifier> prove

Symbolic simulation in progress...
BDD1: at Oxcdd90 (9 nodes)
BDD2: at 0xcdd90 (9 nodes)

CR_ADDER.c2 of carryripple.spec and
CR_ADDER.c2 of carryripple.imp are equivalent :-)
Elapsed time: O sec.

For output c2, equivalence has been proven without changing the design. Sig-
nal ¢3 can also be proven equivalent on the first try. However, for signal ¢,
equivalence checking fails and the verification tool tries to rectify the circuit
automatically.

Rectifier> imppin cl

Rectifier> specpin cl

Rectifier> prove

Symbolic simulation in progress...
BDD1: at Oxcddbl (5 nodes)
BDD2: at OxcddbO (5 nodes)

CR_ADDER.c1 of carryripple.spec and
CR_ADDER.c1 of carryripple.imp are different :-(
Elapsed time: O sec.

Trying to fix circuit...

Checking result...

Constructing solution...

Calling the construct algorithm...
Number of signals for reuse: 2
done (5nodes)

Rectify completet...

2 possible circuit fixes found
Rectification time: O sec.

Total BDD nodes: 51
Garbage collection...
done

Total BDD nodes: 51

We can now choose a solution with the solution command.

Rectifier> solution
(1) : 2 changes in CR_ADDER (0O sec, 3 nodes)
(2) : 2 changes in CR_ADDER.H_ADDER (0 sec, 3 nodes)

(3) : 2 changes in CR_ADDER (0.01 sec, 3 nodes)
(4) : 2 changes in CR_ADDER.H_ADDER (0 sec, 3 nodes)
(6) : 9 changes in CR_ADDER.H_ADDER (0 sec, 5 nodes))

(6) : 9 changes in CR_ADDER (0 sec, 5 nodes)
type in number: 5

We have selected solution 5. The viewsol command automatically applies the
selected solution to the circuit and displays the rectified design.

Rectifier> viewsol
Changes in CR_ADDER

COMPONENT CR_ADDER (al1,a2,b1,b2) --> (c1,c2,c3)
COMPONENT H_ADDER (a,b) --> (sum,carry)
sum := ((b /\ "a) \/ (b /\ a));

carry := (a /\ b);

END
H_ADDER.a := al;
H_ADDER.b := bi;

COMPONENT FULL_ADDER (a,b,c) ——> (sum,carry)
sum := ((a !'=b) !=¢);

carry := (((@ /A) \/ (@ /\ ¢c)) \/ (b /\ ¢));

END
FULL_ADDER.a := a2;
FULL_ADDER.b := b2;

FULL_ADDER.c :

H_ADDER.carry;

cl := H_ADDER.sum;
c2 := FULL_ADDER. sum;
c3 := FULL_ADDER.carry;

END

The circuit has been modified in component H_ADDER by changing the definition
of signal sum.

Table 1 shows a complete list of all computed solutions. The second and
third column contain name of the sub-component and name of the signal to be
modified, respectively. Column 4 shows the old signal definition while column
5 contains the suggested replacement. Comparing the rectified circuit with the
original implementation in Fig. 1, it turns out that the major design error has
been made in component H_ADDER. Output-signal sum computes a false value
due to a wrong logical connective. Instead of performing an XOR-operation,
the equivalence-operator is applied. Solution 5 exactly suggests to replace this
logical connective, but all other solutions also fix the circuit even if some of them
actually do not reflect the designer’s original intention. Since the verification
tool does not have any semantical knowledge about the half-adder, it cannot
distinguish between these solutions. In general, the solution that requires the
minimal number of changes is considered best. Solutions 1 to 4 prove that the
circuit can even be rectified by inserting one additional NOT gate, only.

Using the writesol command allows to write back the rectified circuit to a
file. After saving the circuit, AC/3 can be quitted by typing exit.

‘ Nr | Component | Signal H old definition | suggested replacement

1 | H_ADDER sum a+<b a<+ b

2 | H_ADDER sum a+b —a+b

3 | CR_ADDER H_ADDER.D || bl —bl

4 | CR_ADDER H_ADDER.a || al —al

5 | H_ADDER sum atrb (aA—b)V (-aAb)
6 | CR_ADDER cl H_ADDER. sum | —H_ADDER. sum

Table 1: Complete list of all computed circuit fixes for the carry-ripple adder.

Rectifier> writesol

Enter file name: carryripple.fix
Rectifier> exit

Have a nice day!

3 Tool Description

The following description refers to AC/3 V1.00. AC/3 has been written in
C++ and documented via the DOC++ standard. AC/3 should compile on
every UNIX-platform and every C++ compiler supporting the ANSI standard.
D.E. Long’s BDD library is required for compilation and can be downloaded
freely.

In particular, we have successfully build the system with the following con-
figuration:

Solaris 5.6 and 5.5.1
gee,g++ 2.7.2

flex 2.5.4

bison 1.22

BDD lib dated 06/11/93 (package by D. E. Long)

DOC++ 3.01 (for extracting the developer-documentation)

For installing the system, please refer to the installation notes that come with
the system. To start AC/3, simply type

checker

at the command prompt.

In the next section, we describe the input language of AC/3 V1.00 in more
detail. Section 3.3 gives a detailed description of the available commands, and
Section 3.4 describes currently available flags.

3.1 The Input Language

A first impression of the input language of AC/3 has been given in Fig. 1 and
Fig. 2. Basically, every input file describes a combinatorial circuits in form of
hierarchical net list. To achieve a hierarchical description, several components

can be declared, each consisting of an interface declaration and a component
body. Input and output signals are declared in the interface declaration. In
the component body, sub-components can be declared together with Boolean
formulas defining the component’s behavior.

Throughout the input file, comments can be inserted by typing two slashes.
After //, everything is ignored until a new-line character occurs. Spaces, tab-
ulators, and blank lines can occur everywhere and are skipped by the parser.

We now give a more precise definition of the input-language using regular
expressions and BNF notation.

Identifiers are used to specify names. An identifier can represent a com-
ponent name, a signal name, or a name of an external variable. Formally, we

define
<ident> = [0-9a-zA-Z_]T

We explicitely make the exception that identifiers must not be a reserved word.
Reserved words are COMPONENT, EXTERN, END, NOT, AND, OR, XOR, IMP, and EQUIV.
References represent names of signals.

<reference> 1= <ident>
| <ident> . <ident>

The right most identifier is the signal name and the optional identifier can be
used to specify a distinct component where the signal occurs in.
Ezpressions represent Boolean functions and are defined as follows:

<expr> = true
false
<reference>
EXTERN <ident>
~ <expr>
NOT <expr>
<expr> /\ <expr> conjunction)
<expr> AND <expr> conjunction)

|

| (internal signal)
| (
| (
| (
| (
| (
I <expr> \/ <expr> Edisjunction)
| (
| (
| (
| (
| (
|

external input)
negation)
negation)

<expr> OR <expr> disjunction)
<expr> — > <expr> implication)
<expr> IMP <expr> implication)
<expr> <-> <expr> logical equivalence)
<expr> EQUIV <expr> (logical equivalence)
<expr> XOR <expr> exclusive-or)
(<expr>)

Expressions can either be a reference to a signal, an external input (keyword
EXTERN), or a combination of one or more expressions with a logical connec-
tive.

Assignments allow to assign an expression to a signal:

<assignment> 1= <reference> := <expr> ;

Components are the core objects of the input language. As mentioned before,
each component consists of an interface declaration, a list of sub components
and a list of assignments. Component declarations can be arbitrarily nested
which leads to hierarchical circuit descriptions.

<component> = <interface>
<component>* (sub components)
<assignment>* (assignments)
END

The component interface consists of a component name, a declaration of input
signals, and a declaration of output signals:

<interface> == COMPONENT <ident> (<idlist>) --> (<id_list>)

<idist> = <ident>
| <ident> , <id.list>

Finally, a valid input file consists of the declaration of a single component which
is called the main component:

<input-file> 1= <component> (main component)

The input signals of the main component are implicitly considered to be external
inputs. In all other components, external signals have to be defined using the
EXTERN keyword.

3.2 Formal Semantics

In this section, we provide a formal semantics for the input language defined in
the previous section. The semantics is given in form of a function that maps
a given input-file p onto a corresponding Boolean formula [p] , describing the
output-signals of p. [p] 4 is called the denotation of p. The additional subscript
A is a simple string carrying the component-name where p is defined in. If the
subscript is omitted, we implicitly assume A to be the empty string.

We use a syntax directed semantics which means that the semantics of a
program-construct is defined in terms of the semantics of its syntactic compo-
nents. Formally, we define the denotation of AC/3 input-files as follows:

e Identifiers:
[ident], := A.ident

Note that A.ident is the name of a single variable. The prefix A is added
to the variable name in order to avoid name clashes between variables
defined in different components.

e References:
[ident], = A.ident
[identl . ident2], := A.identl.ident?

10

o FEzpressions:

[true], := true
[false], := false
[EXTERN ident |, := ident
[~ empr], = [emprl,

[NOT expr] 4

[exprl /\ expr2],
[exprl AND expr2],
[expri \/ expr2],

[eapr],

[expri |4 A expr2] 4

[expri |4 N[expr2] 4

[expri |, V[expr2],

[expri |, V[expr2],

[expri], — [expr2],
[expri], — [expr2],
[expri], < [expr2],
[expri], < [expr2],
[expri |, @[expr2],

[Cemr)]y = (I emprly)

[exprl OR expr2],

[exprl => expr2] 4

[exprl IMP expr2 |,

[expri <-> expr2],
[exprl EQUIV expr2] 4
[exprl XOR expr2 |,

The logical operators A, V, —, ¢, @ stand for logical conjunction, dis-
junction, implication, equivalence, and exclusive-or, respectively, and are
defined by their usual truth tables.

o Assignments:

[reference := expr], = [reference |, = [expr]

e Components:

[interface cmp_list asslist], = [cmplist]| 4 pame

Al ass-list]| y pame

where name is the component-name specified in the interface.

Lists of components:

[empty list], := true
[compl | rest], := [compl] N[rest],

Lists of assignments:

[empty list], := true
[asst|rest], = [assl1] A[rest]y

11

e Input file:
Before defining the semantics of a complete AC/3 program, we introduce
the sigs4 function mapping components to sets of variables:
sigs,(mame : (i1,...,05)==>(01,...,0m) cmp_list ass_list) :=
{Aiy,..., A, Aor, ..., Ao} U sigsg namel cmp_list)
sigs(C) collects the names of all signals occurring either in C' itself or in
one of its sub-components. We extend the definition to component-lists
as usual:
sigsa(empty list) = 0
sigsq(compl | rest) = sigsy(compl) U sigs,(rest)
Using the sigs function, we define the semantics of a complete input-file
as
[interface cmp_list ass-list] := 3Fsi,...,sk:
[cmp-list |qme

A [ass-list | ame

where name is the component-name specified in the interface and
(1, Sk) = sigspame(cmp_list). In the resulting formula, all interme-
diate signals are hidden by the ”3” operator denoting standard existential
quantification for Boolean formulas, i.e.,

Bz f) = (flz < 0]V flz < 1])

Thus, the denotational semantics for an AC/3 program is a Boolean for-
mula only containing the input and output signals of the main component
as variables.

3.3 Program Commands

After AC/3 has been started, the following message comes up:

Circuit-Rectifier V1.00b, build on Fri Dec 11 19:05:33 1998
Dirk W. Hoffmann, (C)opyright 1998 University of Karlsruhe

Type ’7’ for help...

Rectifier>

This is the text interface of AC/3. A graphical user interface is currently under
development. Entering “?” at the command prompt brings up a summary of all
available commands for driving the equivalence checker and rectification engine.
The following commands are currently supported:

e exit

12

e impfile
e info

e profile
® prove

e set

e settings
e solution
e specfile
® specpin
e viewimp
e viewsol
® viewspec

e writesol

Now, we describe the commands in more detail:

Parameters:
Purpose:

Requires:

Parameters:

Purpose:

Example:

Requires:

Parameters:

Purpose:

Example:

none
Terminates AC/3.

name

Loads the specified implementation circuit from disc. The in-
put file must follow the language definition given in Section
3.1

impfile carryripple.imp

name

Selects a signal in the implementation circuit that is going to
be compared with the corresponding signal in the specification
circuit.

imppin cl

13

Requires:

Parameters:

Purpose:

Requires:

Parameters:

Purpose:

Requires:

Parameters:

Purpose:

Requires:

set

Parameters:

Purpose:

Example:

Requires:

Parameters:

Purpose:

Requires:

solution

Implementation circuit has already been loaded.
(see impfile-command)

none

Shows information about this program.

none
Shows detailed information about the currently loaded circuits.

This function has been implemented for debugging purposes,
but can also be invoked directly.

none
This command calls the core algorithms of AC/3. First, the
selected output signals in the specification and implementation
circuit are checked for equivalence. If equivalence does not
hold, the rectification engine is invoked automatically. For a
detailed description of the underlying algorithms, see [7].

Former calls to impfile, specfile, imppin, specpin

flag value

This command allows to set a flag to the specified value. A list
of available flags together with a description of their meaning
is provided in Section 3.4.

set solution_type gate_inputs

none

Shows the current program configuration. Displayed items in-
clude name of loaded circuits, name of selected signals, and
current flag-values. After a flag is changed, this command is
invoked automatically.

14

Parameters:

Purpose:

Requires:

Parameters:

Purpose:

Example:

Requires:

Parameters:

Purpose:

Example:

Requires:

Parameters:

Purpose:

Requires:

viewsol

Parameters:

Purpose:

Requires:

viewspec

Parameters:

Purpose:

Requires:

writesol

Parameters:

none

This command displays the list of computed solutions and al-
lows the user to choose a specific circuit fix which is then ap-
plied to the implementation circuit.

Former call to prove

name

Loads the specified specification circuit from disc. The input
file must follow the language definition given in Section 3.1

specfile carryripple.spec

name

Selects a signal in the specification circuit that is going to be
compared with the corresponding signal in the implementation
circuit.

specpin cl
Specification circuit has already been loaded.
(see specfile-command)

none
Prints the description of the implementation circuit.

Implementation circuit has already been loaded.

none

Prints the rectified implementation circuit. This command
may only be used after a solution has been selected.

Former call to the solution-command.

none
Prints the description of the specification circuit.

Specification circuits has already been loaded.

name

15

Purpose:

Example:

Requires:

3.4 Flags

Writes the rectified implementation circuit back to a file. The
file name must be provided as argument.

writesol carryripple.fixed

Some solution must have been selected. (see solution-
command)

AC/3 provides various flags which influence the rectification process. At the
moment, the following flags are supported:

e caching

tempcaching

solution_type

e precomputation

e granularity

The current value of the flags can be displayed with the settings command
and changes with the set command (see Section 3.3).

We now describe all supported flags in detail. For each flag, possible values,
default value, and meaning is described:

Possible values:
Default value:

Purpose:

Warning:

Possible values:
Default value:

Purpose:

on, off
on

This flag enables or disables the global caching mechanism for
BDDs. Caching of BDDs is used when traversing the circuit
net list and can dramatically decrease computation time.
Since caching does not influence the computed results, it
should only be switched off for debugging purposes. This flag
only influences caching in the rectification engine and does not
influence caching performed within the underlying BDD pack-
age.

Disabling the caching mechanism can cause an exponential
blow-up in runtime.

on, off
on

This flag enables or disables the temporary caching mechanism
for BDDs. A temporary cache is used in addition to the global
cache in some functions of the rectification engine. This can
further decrease computation time considerably.

16

Warning:

Since caching does not influence the computed results, it
should only be switched off for debugging purposes. This flag
only influences caching in the rectification algorithm and does
not influence caching performed within the underlying BDD
package.

Disabling the caching mechanism can cause an exponential
blow-up in runtime.

solution_type

Possible values:
Default value:

Purpose:

main_inputs, gate_inputs, comp_inputs

comp_inputs

This flag influence the structure of the computed circuit recti-

fications. To keep modifications small, AC/3 tries to compute

solutions that reuse as many signals of the old circuit as possi-

ble. The solution type determines the signals that are going to

be reused. The user can choose out of three possible solution

types:

main_inputs: The solution formula is constructed out of ex-
ternal signals, only. Thus, there is no reuse of any inter-
mediate signal. This solution type should only be chosen
if the implementation circuit is a flat design and does
not exhibit any hierarchy. This solution type can also be
used for debugging purposes since it excludes the call to
the construct-algorithm (see [7] for details).

gate_inputs: The solution formula is constructed out of ex-
ternal signals and the immediate input signals to the part
of the circuit that is going to be substituted.

comp_inputs: The solution formula is constructed out of
external inputs and the input signals of the component
where the modification occurs.

precomputation

Possible values:
Default value:

Purpose:

on, off
off

If precomputation is enabled, the rectification-algorithm im-
mediately computes a solution whenever a rectifiable sub-
component has been localized. If precomputation is disabled,
solution-computation is delayed and only computed after a spe-
cific solution has been selected with the solution command
described in Section 3.3. Precomputation can be switched off
for rectifying large designs. This can accelerate the rectifica-
tion process considerably. However, to estimate the quality of
a solution, we have to count the number of modifications that

17

have to be applied to the implementation circuit. This can
only be done after the solution formulas have explicitely been
computed.

Possible values: low, medium, high
Default value: low

Purpose: The search granularity determines which parts of the imple-
mentation circuit are checked for rectifiability. We distinguish
three types of different circuit-rectifications:

1. rectifications that substitute an output-signal of some
component

2. rectifications that substitute an input-signal of some com-
ponent

3. rectifications that substitute an inner part of a compo-
nent

According to the selected search granularity, only rectifications
of a specific type are computed. In particular:

e low granularity only computes type 1 rectifications

e medium granularity only computes type 1 and type 3
rectifications

e high granularity computes all types of solutions

4 Additional Tools

AC/3 provides two additional tools for
e statistical analysis of the input files

e converting ISCAS89 format

Statistical Analysis

Usage: statistics file

Purpose: The statistics tool parses the specified input file and first per-
forms some consistency checks. Besides searching missing sig-
nal definitions, the input circuit is checked for loop-freeness.
After checking consistency, some statistical information is com-
puted, i.e.,

e the number of logical connectives,
e the number of internal references, and

e the input cones!

'the set of external input variables occuring in the definition of the observed signal.

18

are determined for each output signal of the main component.

‘Converter from ISCAS89 format|

Usage: conv89 file

Purpose: Reads in the specified file in ISCAS89 format and prints it in
the input language of AC/3 to stdout. See Section 3.1 for a
detailed description of the input language. The ISCAS89 con-
verter allows to get access to a broad range of circuits (e.g.,
the ISCAS85 benchmarks [3] and the Berkeley benchmarks cir-
cuits [2]).

19

A Copyright Notice, License, and Disclaimer

AC/3 V1.00b

Author: Dirk Hoffmann
email: hoff@ira.uka.de
WWW: http://goethe.ira.uka.de/ hoff

COPYRIGHT NOTICE, LICENSE AND DISCLAIMER.

(C)opyright 1998 University of Karlsruhe (TH).

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appears in all
copies and that both the copyright notice and this permission
notice and warranty disclaimer appear in supporting
documentation.

Permission to use, copy, modify, and distribute files written by
others, must be obtained from the authors of those files.

Dirk Hoffmann disclaims all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall Dirk Hoffmann be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.

20

References

[1]

[9]

D. Brand. Verification of Large Synthesized Designs. In IEEE/ACM Inter-
national Conference on Computer Aided Design (ICCAD), pages 534-537,
Santa Clara, California, November 1993. ACM/IEEE, IEEE Computer So-
ciety Press.

R.K. Brayton, G.D. Hachtel, C.T. McMullen, and A.L. Sangiovanni-
Vincentelli. Logic Minimization Algorithms for VLSI Synthesis. The Kluwer
International Series in Engineering and Computer Science. Kluwer Acad-
emic Publishers, 1986.

F. Brglez and H. Fujiwara. A neutral netlist of 10 combinatorial bench-
mark circuits and a target translator in FORTRAN. In Int. Symposium
on Circuits and Systems, Special Session on ATPG and Fault Simulation,
1985.

R.E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers, C-35(8):677-691, August 1986.

R.E. Bryant. Symbolic boolean manipulation with ordered binary decision
diagrams. ACM Computing Surveys, 24(3):293-318, September 1992.

A. Gupta. Formal Hardware Verification Methods: A Survey. Journal of
Formal Methods in System Design, 1:151-238, 1992.

D. W. Hoffmann and T. Kropf. Using BDD-based decomposition for au-
tomatic error correction of combinatorial circuits. Technical Report 6/99,
University of Karlsruhe, March 1999.

Alan J. Hu. Formal hardware verification with BDDs: An introduction. In
IEEE Pacific Rim Conference on Communications, Computers, and Signal
Processing (PACRIM), pages 677-682, October 1997.

S.M. Reddy, W. Kunz, and D.K. Pradhan. Novel Verification Framework
Combining Structural and OBDD Methods in a Synthesis Environment. In
ACM/IEEE Design Automation Conference, pages 414-419, 1995.

21

