
AC�� V����

A Tool for Automatic Error Correction

of Combinatorial Circuits�

Dirk W� Ho�mann and Thomas Kropf

Institute for Computer Design and Fault Tolerance�

Prof� D� Schmid

Universit�at Karlsruhe� D���	
� Karlsruhe� Germany

hoff�ira�uka�de kropf�ira�uka�de
http���goethe�ira�uka�de�hvg

Abstract

AC�� is a tool for performing automatic error correction in combina�
torial circuits� Two circuits must be provided to the system where one
serves as the speci�cation circuit and the other one as the current imple�
mentation� AC�� tries to prove equivalence between both designs and
performs automatic error correction if equivalence does not hold� The tool
is based on the recti�cation theory developed in ����

keywords� Automatic error correction� equivalence checking� BDDs

� Introduction

In recent years� formal veri�cation techniques ��� have become more and more
sophisticated and for several application domains they have already found their
way into industrial environments� Boolean equivalence checking ��� 	� 
�� mostly
based on BDDs ��� ��� is unquestionably one of these techniques and usually
applied during the optimization process to ensure that an optimized circuit still
exhibits the same behavior as the original golden� design� Using BDDs for
representing Boolean functions� the veri�cation task mainly consists of creating
a BDD for the Boolean function of each output�signal� Then� due to the normal
form property of BDDs� both signals implement the same function if and only
if they have the same BDD representation� Hence� equivalence can be decided
by simply comparing both BDDs�

A lot of professional tools have been proposed in recent years and they have
already been able to prove their practical usefulness in a short period of time�
Many companies are starting to apply equivalence checking and in a few years
this method will undoubtedly be a fully accepted and integrated part of the
design cycle�

�This work is supported by the ESPRIT LTR Project �����

	



A major requirement of formal methods to be applied successfully in indus�
trial environments is that a veri�cation tool provides useful information even if
the veri�cation task fails� Then� the application domain of formal veri�cation
is no longer restricted to approve correctness of a speci�c design� it can also
serve as a powerful debugging technique and therefore helps speeding up the
whole design cycle�

If equivalence checking fails� most veri�cation tools only allow to compute a
counterexample in form of a combination of input values for which the output of
the optimized circuit di�ers from its speci�cation� Therefore� it often remains
extremely hard to detect the error causing components� Counter examples as
produced by most equivalence checkers can only serve as hints for debugging a
circuit and a deeper understanding of the design is still essential�

In recent years� several approaches have been presented for extending equiv�
alence checkers with capabilities not only to compute counter examples� but to
locate and rectify errors in the provided design� The applicability of such a
method is strongly in�uenced by the following aspects�

� Which types of errors can be found �

� Does the method scale to large circuits �

� How many changes does the computed solution require �

� Does the method perform well even if both circuits are structurally dif�
ferent �

AC�� is a tool for automatic error localization and recti�cation of combina�
torial circuits and based on the recti�cation theory developed in ���� Basically�
AC�� tries to determine the smallest component containing the erroneous parts
in the optimized circuit� Once such a component has been localized� a circuit
�x is computed and suggested to the designer�

The recti�cation method implemented in AC�� does not assume any error
model and therefore� arbitrary design errors can be detected� Moreover� when
computing a circuit recti�cation� AC�� tries to incorporate as many sub�parts
of the circuit as possible in order to minimize the number of modi�cations�
The underlying method directly works on BDDs� and during the recti�cation
process� only the abstract BDD representation of the speci�cation�circuit is con�
sidered� Thus� the success of our algorithm does not depend on any structural
similarity between the implementation and the speci�cation�

This paper is organized as follows� In Section �� we provide a quick tutorial
on AC��� The basic steps for rectifying a circuit are illustrated by a small
example� Section � describes the tools in more detail� A formal de�nition of
the input language including a formally de�ned semantics is given in Section ��	
and ���� Section ��� provides a complete description of all available commands�
The currently supported �ags are described in Section ���� In Section �� we
give a brief description of additional tools of AC���

�



� A Tutorial Example

This Section demonstrates the usage of AC�� with a small tutorial example�
A complete and more detailed description of the system will be presented in
Section �� To start AC��� simply type

checker

at the Unix command prompt� If the system has been build successfully� AC��
answers with the following message�

Circuit�Rectifier V����b� build on Fri Dec �� ����	�

 ����

Dirk W� Hoffmann� �Copyright ���� University of Karlsruhe

Type ��� for help���

Rectifier�

Whenever the prompt appears� typing � brings up a list of currently available
commands�

Options�

��������

� � this help message

info � about this program

exit � exit program

settings � display current settings

impfile �file� � select implementation file

specfile �file� � select specification file

imppin �name� � select implementation out�pin

specpin �name� � select specification out�pin

viewimp � view implementation file

viewspec � view specification file

prove � start equivalence checking

profile � print st about parsed files

solution � select a solution

viewsol � view selected solution

writesol � write rectified circuit to a file

set �flag� �value� � set flag

possible flags and values�

caching �on�off�

tempcaching �on�off�

precomputation �on�off�

granularity �low�medium�high�

solution�type �main�inputs�gate�inputs�comp�inputs�

In this tutorial section� we will only use some of these commands� A complete
description of all commands can be found in Section ����

�



COMPONENT CR�ADDER �a��a��b��b� ��� �c��c��c


COMPONENT H�ADDER �a�b ��� �sum�carry

sum �� �a ��� b�

carry �� �a �� b�

END

COMPONENT FULL�ADDER �a�b�c ��� �sum�carry

sum �� a XOR b XOR c�

carry �� �a �� b �� �a �� c �� �b �� c�

END

H�ADDER�a �� a��

H�ADDER�b �� b��

FULL�ADDER�a �� a��

FULL�ADDER�b �� b��

FULL�ADDER�c �� H�ADDER�carry�

c� �� H�ADDER�sum�

c� �� FULL�ADDER�sum�

c
 �� FULL�ADDER�carry�

END

Figure 	� Example� A two bit Carry�Ripple�Adder

For this tutorial session� we want to rectify a very small circuit implementing
a two�bit carry�ripple adder� The implementation circuit is shown in Fig� 	�
The circuit has four global input�signals a�� a�� b�� b� and three output signals
c�� c�� c�� Using a half�adder �component H�ADDER� and a full�adder �component
FULL�ADDER�� the circuit computes the sum �c�� c�� c�� � ��� a�� a�� � ��� b�� b���

The speci�cation is shown in Fig� �� Unlike the implementation� the spec�
i�cation de�nes its output�signals by Boolean functions being derived directly
from the truth�table of Boolean addition�

To load the implementation circuit and the speci�cation circuit� we use the
impfile and specfile command� respectively�

Rectifier� impfile carryripple�imp

Parsing file��� done

COMPONENT CR�ADDER �a��a��b��b� ��� �c��c��c


c� �� �a� XOR b��

c� �� �a� XOR b� XOR �a� �� b��

c
 �� �a� �� b� �� �a� �� b� �� b� �� �a� �� a� �� b��

END

Figure �� Speci�cation for the ��bit adder�circuit�

�



file carryripple�imp loaded���

Rectifier� specfile carryripple�spec

Parsing file��� done

file carryripple�spec loaded���

carryripple�imp and varryripple�spec are the �lenames on disk�
Now� we have to specify a pair of output signals we want to prove equivalent�

Output signals can be selected with the imppin and specpin command� For
now� we choose output c� in both circuits�

Rectifier� imppin c�

Rectifier� specpin c�

With the settings command� we can display the current con�guration�

Rectifier� settings

Specification�

��������������

File� carryripple�spec

Out�pin� CR�ADDER�c�

Implementation�

���������������

File� carryripple�imp

Out�pin� CR�ADDER�c�

Solution�

���������

currently selected� �none�

Flags�

������

bdd caching � on

temporary caching � on

precompute solutions� off

solutions formulas reuse signals from � current component

search granularity � low

Before starting the recti�cation process� we change some of the �ags� Since we
deal with a very small example� we set the precomputation �ag�

Rectifier� set precomputation on

This causes the recti�er to immediately compute a solution whenever a recti�
�able sub�component has been localized� If the �ag is switched o�� solution�
computation is delayed� Precomputation should only be switched on if the
designs to be recti�ed are not too large since it can considerably slow down the
recti�cation process� We also choose high search�granularity to �nd a maximum
number of solutions�

Rectifier� set granularity high

�



To invoke the equivalence checker� simply type prove� AC�� now creates the
BDD representation for the selected output signals and checks for equivalence�

Rectifier� prove

Symbolic simulation in progress���

BDD�� at �xcdd�� �� nodes

BDD�� at �xcdd�� �� nodes

CR�ADDER�c� of carryripple�spec and

CR�ADDER�c� of carryripple�imp are equivalent ��

Elapsed time� � sec�

For output c�� equivalence has been proven without changing the design� Sig�
nal c
 can also be proven equivalent on the �rst try� However� for signal c��
equivalence checking fails and the veri�cation tool tries to rectify the circuit
automatically�

Rectifier� imppin c�

Rectifier� specpin c�

Rectifier� prove

Symbolic simulation in progress���

BDD�� at �xcddb� �	 nodes

BDD�� at �xcddb� �	 nodes

CR�ADDER�c� of carryripple�spec and

CR�ADDER�c� of carryripple�imp are different ���

Elapsed time� � sec�

Trying to fix circuit���

Checking result���

Constructing solution���

Calling the construct algorithm���

Number of signals for reuse� �

done �	nodes

Rectify completet���

� possible circuit fixes found

Rectification time� � sec�

Total BDD nodes� 	�

Garbage collection���

done

Total BDD nodes� 	�

We can now choose a solution with the solution command�

Rectifier� solution

�� � � changes in CR�ADDER �� sec� 
 nodes

�� � � changes in CR�ADDER�H�ADDER �� sec� 
 nodes

�



�
 � � changes in CR�ADDER ����� sec� 
 nodes

�� � � changes in CR�ADDER�H�ADDER �� sec� 
 nodes

�	 � � changes in CR�ADDER�H�ADDER �� sec� 	 nodes

�� � � changes in CR�ADDER �� sec� 	 nodes

type in number� 	

We have selected solution �� The viewsol command automatically applies the
selected solution to the circuit and displays the recti�ed design�

Rectifier� viewsol

Changes in CR�ADDER

COMPONENT CR�ADDER �a��a��b��b� ��� �c��c��c


COMPONENT H�ADDER �a�b ��� �sum�carry

sum �� ��b �� �a �� ��b �� a�

carry �� �a �� b�

END

H�ADDER�a �� a��

H�ADDER�b �� b��

COMPONENT FULL�ADDER �a�b�c ��� �sum�carry

sum �� ��a �� b �� c�

carry �� ���a �� b �� �a �� c �� �b �� c�

END

FULL�ADDER�a �� a��

FULL�ADDER�b �� b��

FULL�ADDER�c �� H�ADDER�carry�

c� �� H�ADDER�sum�

c� �� FULL�ADDER�sum�

c
 �� FULL�ADDER�carry�

END

The circuit has been modi�ed in component H ADDER by changing the de�nition
of signal sum�

Table 	 shows a complete list of all computed solutions� The second and
third column contain name of the sub�component and name of the signal to be
modi�ed� respectively� Column � shows the old signal de�nition while column
� contains the suggested replacement� Comparing the recti�ed circuit with the
original implementation in Fig� 	� it turns out that the major design error has
been made in component H�ADDER� Output�signal sum computes a false value
due to a wrong logical connective� Instead of performing an XOR�operation�
the equivalence�operator is applied� Solution � exactly suggests to replace this
logical connective� but all other solutions also �x the circuit even if some of them
actually do not re�ect the designer�s original intention� Since the veri�cation
tool does not have any semantical knowledge about the half�adder� it cannot
distinguish between these solutions� In general� the solution that requires the
minimal number of changes is considered best� Solutions 	 to � prove that the
circuit can even be recti�ed by inserting one additional NOT gate� only�

Using the writesol command allows to write back the recti�ed circuit to a
�le� After saving the circuit� AC�� can be quitted by typing exit�

�



Nr Component Signal old de�nition suggested replacement

	 H�ADDER sum a� b a� �b
� H�ADDER sum a� b �a� b

� CR�ADDER H�ADDER�b b� �b�
� CR�ADDER H�ADDER�a a� �a�
� H�ADDER sum a� b �a � �b� � ��a � b�
� CR�ADDER c� H�ADDER�sum �H�ADDER�sum

Table 	� Complete list of all computed circuit �xes for the carry�ripple adder�

Rectifier� writesol

Enter file name� carryripple�fix

Rectifier� exit

Have a nice day�

� Tool Description

The following description refers to AC�� V����� AC�� has been written in
C�� and documented via the DOC�� standard� AC�� should compile on
every UNIX�platform and every C�� compiler supporting the ANSI standard�
D�E� Long�s BDD library is required for compilation and can be downloaded
freely�

In particular� we have successfully build the system with the following con�
�guration�

Solaris ��� and ����	
gcc�g�� �����
�ex �����
bison 	���
BDD lib dated ���		�
� �package by D� E� Long�
DOC�� ���	 �for extracting the developer�documentation�

For installing the system� please refer to the installation notes that come with
the system� To start AC��� simply type

checker

at the command prompt�
In the next section� we describe the input language of AC�� V���� in more

detail� Section ��� gives a detailed description of the available commands� and
Section ��� describes currently available �ags�

��� The Input Language

A �rst impression of the input language of AC�� has been given in Fig� 	 and
Fig� �� Basically� every input �le describes a combinatorial circuits in form of
hierarchical net list� To achieve a hierarchical description� several components

�



can be declared� each consisting of an interface declaration and a component
body� Input and output signals are declared in the interface declaration� In
the component body� sub�components can be declared together with Boolean
formulas de�ning the component�s behavior�

Throughout the input �le� comments can be inserted by typing two slashes�
After ��� everything is ignored until a new�line character occurs� Spaces� tab�
ulators� and blank lines can occur everywhere and are skipped by the parser�

We now give a more precise de�nition of the input�language using regular
expressions and BNF notation�

Identi�ers are used to specify names� An identi�er can represent a com�
ponent name� a signal name� or a name of an external variable� Formally� we
de�ne

�ident� ��� ����a�zA�Z� �

We explicitely make the exception that identi�ers must not be a reserved word�
Reserved words are COMPONENT� EXTERN� END� NOT� AND� OR� XOR� IMP� and EQUIV�

References represent names of signals�

�reference� ��� �ident�
j �ident� � �ident�

The right most identi�er is the signal name and the optional identi�er can be
used to specify a distinct component where the signal occurs in�

Expressions represent Boolean functions and are de�ned as follows�

�expr� ��� true

j false

j �reference� �internal signal�
j EXTERN �ident� �external input�
j � �expr� �negation�
j NOT �expr� �negation�
j �expr� �n �expr� �conjunction�
j �expr� AND �expr� �conjunction�
j �expr� n� �expr� �disjunction�
j �expr� OR �expr� �disjunction�
j �expr� � � �expr� �implication�
j �expr� IMP �expr� �implication�
j �expr� ��� �expr� �logical equivalence�
j �expr� EQUIV �expr� �logical equivalence�
j �expr� XOR �expr� �exclusive�or�
j ��expr��

Expressions can either be a reference to a signal� an external input �keyword
EXTERN�� or a combination of one or more expressions with a logical connec�
tive�

Assignments allow to assign an expression to a signal�

�assignment� ��� �reference� �� �expr� �






Components are the core objects of the input language� As mentioned before�
each component consists of an interface declaration� a list of sub components
and a list of assignments� Component declarations can be arbitrarily nested
which leads to hierarchical circuit descriptions�

�component� ��� �interface�
�component�� �sub components�
�assignment�� �assignments�
END

The component interface consists of a component name� a declaration of input
signals� and a declaration of output signals�

�interface� ��� COMPONENT �ident� ��id list�� ��� ��id list��

�id list� ��� �ident�
j �ident� � �id list�

Finally� a valid input �le consists of the declaration of a single component which
is called the main component�

�input��le� ��� �component� �main component�

The input signals of the main component are implicitly considered to be external
inputs� In all other components� external signals have to be de�ned using the
EXTERN keyword�

��� Formal Semantics

In this section� we provide a formal semantics for the input language de�ned in
the previous section� The semantics is given in form of a function that maps
a given input��le p onto a corresponding Boolean formula ��p��

A
describing the

output�signals of p� ��p��
A
is called the denotation of p� The additional subscript

A is a simple string carrying the component�name where p is de�ned in� If the
subscript is omitted� we implicitly assume A to be the empty string�

We use a syntax directed semantics which means that the semantics of a
program�construct is de�ned in terms of the semantics of its syntactic compo�
nents� Formally� we de�ne the denotation of AC�� input��les as follows�

� Identi�ers�

�� ident ��
A

�� A�ident

Note that A�ident is the name of a single variable� The pre�x A is added
to the variable name in order to avoid name clashes between variables
de�ned in di�erent components�

� References�

�� ident ��
A

�� A�ident

�� ident� � ident� ��
A

�� A�ident��ident�

	�



� Expressions�

��true��
A

�� true

��false��
A

�� false

��EXTERN ident ��
A

�� ident

�� � expr ��
A

�� ��� expr ��
A

��NOT expr ��
A

�� ��� expr ��
A

�� expr� �� expr� ��
A

�� �� expr� ��
A
� �� expr� ��

A

�� expr� AND expr� ��
A

�� �� expr� ��
A
� �� expr� ��

A

�� expr� �� expr� ��
A

�� �� expr� ��
A
� �� expr� ��

A

�� expr� OR expr� ��
A

�� �� expr� ��
A
� �� expr� ��

A

�� expr� �� expr� ��
A

�� �� expr� ��
A
� �� expr� ��

A

�� expr� IMP expr� ��
A

�� �� expr� ��
A
� �� expr� ��

A

�� expr� ��� expr� ��
A

�� �� expr� ��
A
� �� expr� ��

A

�� expr� EQUIV expr� ��
A

�� �� expr� ��
A
� �� expr� ��

A

�� expr� XOR expr� ��
A

�� �� expr� ��
A
	 �� expr� ��

A

��� expr ���
A

�� ��� expr ��
A
�

The logical operators �� �� �� �� 	 stand for logical conjunction� dis�
junction� implication� equivalence� and exclusive�or� respectively� and are
de�ned by their usual truth tables�

� Assignments�

�� reference �� expr ��
A

�� �� reference ��
A
� �� expr ��

A

� Components�

�� interface cmp list ass list ��
A

�� �� cmp list ��
A�name

� �� ass list ��
A�name

where name is the component�name speci�ed in the interface�

� Lists of components�

�� empty list ��
A

�� true

�� comp� j rest ��
A

�� �� comp� ��
A
� �� rest ��

A

� Lists of assignments�

�� empty list ��
A

�� true

�� ass� j rest ��
A

�� �� ass� ��
A
� �� rest ��

A

		



� Input �le�

Before de�ning the semantics of a complete AC�� program� we introduce
the sigsA function mapping components to sets of variables�

sigsA� name � �i�� � � � � in�����o�� � � � � om� cmp list ass list � ��

fA�i�� � � � � A�in� A�o�� � � � � A�omg 
 sigsA�name� cmp list �

sigs�C� collects the names of all signals occurring either in C itself or in
one of its sub�components� We extend the de�nition to component�lists
as usual�

sigsA� empty list � �� �

sigsA� comp� j rest � �� sigsA� comp� � 
 sigsA� rest �

Using the sigs function� we de�ne the semantics of a complete input��le
as

�� interface cmp list ass list �� �� �s�� � � � � sk �

�� cmp list ��name
� �� ass list ��name

where name is the component�name speci�ed in the interface and
�s�� � � � � sk� � sigsname� cmp list �� In the resulting formula� all interme�
diate signals are hidden by the ��� operator denoting standard existential
quanti�cation for Boolean formulas� i�e��

��x � f� � �f �x �� � f �x 	��

Thus� the denotational semantics for an AC�� program is a Boolean for�
mula only containing the input and output signals of the main component
as variables�

��� Program Commands

After AC�� has been started� the following message comes up�

Circuit�Rectifier V����b� build on Fri Dec �� ����	�

 ����

Dirk W� Hoffmann� �Copyright ���� University of Karlsruhe

Type ��� for help���

Rectifier�

This is the text interface of AC��� A graphical user interface is currently under
development� Entering �� at the command prompt brings up a summary of all
available commands for driving the equivalence checker and recti�cation engine�
The following commands are currently supported�

� exit

	�



� impfile

� info

� profile

� prove

� set

� settings

� solution

� specfile

� specpin

� viewimp

� viewsol

� viewspec

� writesol

Now� we describe the commands in more detail�

exit

Parameters� none

Purpose� Terminates AC���

Requires� �

impfile

Parameters� name

Purpose� Loads the speci�ed implementation circuit from disc� The in�
put �le must follow the language de�nition given in Section
��	

Example� impfile carryripple�imp

Requires� �

imppin

Parameters� name

Purpose� Selects a signal in the implementation circuit that is going to
be compared with the corresponding signal in the speci�cation
circuit�

Example� imppin c�

	�



Requires� Implementation circuit has already been loaded�
�see impfile�command�

info

Parameters� none

Purpose� Shows information about this program�

Requires� �

profile

Parameters� none

Purpose� Shows detailed information about the currently loaded circuits�
This function has been implemented for debugging purposes�
but can also be invoked directly�

Requires� �

prove

Parameters� none

Purpose� This command calls the core algorithms of AC��� First� the
selected output signals in the speci�cation and implementation
circuit are checked for equivalence� If equivalence does not
hold� the recti�cation engine is invoked automatically� For a
detailed description of the underlying algorithms� see ����

Requires� Former calls to impfile� specfile� imppin� specpin

set

Parameters� �ag value

Purpose� This command allows to set a �ag to the speci�ed value� A list
of available �ags together with a description of their meaning
is provided in Section ����

Example� set solution type gate inputs

Requires� �

settings

Parameters� none

Purpose� Shows the current program con�guration� Displayed items in�
clude name of loaded circuits� name of selected signals� and
current �ag�values� After a �ag is changed� this command is
invoked automatically�

Requires� �

solution

	�



Parameters� none

Purpose� This command displays the list of computed solutions and al�
lows the user to choose a speci�c circuit �x which is then ap�
plied to the implementation circuit�

Requires� Former call to prove

specfile

Parameters� name

Purpose� Loads the speci�ed speci�cation circuit from disc� The input
�le must follow the language de�nition given in Section ��	

Example� specfile carryripple�spec

Requires� �

specpin

Parameters� name

Purpose� Selects a signal in the speci�cation circuit that is going to be
compared with the corresponding signal in the implementation
circuit�

Example� specpin c�

Requires� Speci�cation circuit has already been loaded�
�see specfile�command�

viewimp

Parameters� none

Purpose� Prints the description of the implementation circuit�

Requires� Implementation circuit has already been loaded�

viewsol

Parameters� none

Purpose� Prints the recti�ed implementation circuit� This command
may only be used after a solution has been selected�

Requires� Former call to the solution�command�

viewspec

Parameters� none

Purpose� Prints the description of the speci�cation circuit�

Requires� Speci�cation circuits has already been loaded�

writesol

Parameters� name

	�



Purpose� Writes the recti�ed implementation circuit back to a �le� The
�le name must be provided as argument�

Example� writesol carryripple�fixed

Requires� Some solution must have been selected� �see solution�
command�

��� Flags

AC�� provides various �ags which in�uence the recti�cation process� At the
moment� the following �ags are supported�

� caching

� tempcaching

� solution type

� precomputation

� granularity

The current value of the �ags can be displayed with the settings command
and changes with the set command �see Section �����

We now describe all supported �ags in detail� For each �ag� possible values�
default value� and meaning is described�

caching

Possible values� on� off

Default value� on

Purpose� This �ag enables or disables the global caching mechanism for
BDDs� Caching of BDDs is used when traversing the circuit
net list and can dramatically decrease computation time�
Since caching does not in�uence the computed results� it
should only be switched o� for debugging purposes� This �ag
only in�uences caching in the recti�cation engine and does not
in�uence caching performed within the underlying BDD pack�
age�

Warning� Disabling the caching mechanism can cause an exponential
blow�up in runtime�

tempcaching

Possible values� on� off

Default value� on

Purpose� This �ag enables or disables the temporary caching mechanism
for BDDs� A temporary cache is used in addition to the global
cache in some functions of the recti�cation engine� This can
further decrease computation time considerably�

	�



Since caching does not in�uence the computed results� it
should only be switched o� for debugging purposes� This �ag
only in�uences caching in the recti�cation algorithm and does
not in�uence caching performed within the underlying BDD
package�

Warning� Disabling the caching mechanism can cause an exponential
blow�up in runtime�

solution type

Possible values� main inputs� gate inputs� comp inputs

Default value� comp inputs

Purpose� This �ag in�uence the structure of the computed circuit recti�
�cations� To keep modi�cations small� AC�� tries to compute
solutions that reuse as many signals of the old circuit as possi�
ble� The solution type determines the signals that are going to
be reused� The user can choose out of three possible solution
types�

main inputs� The solution formula is constructed out of ex�
ternal signals� only� Thus� there is no reuse of any inter�
mediate signal� This solution type should only be chosen
if the implementation circuit is a �at design and does
not exhibit any hierarchy� This solution type can also be
used for debugging purposes since it excludes the call to
the construct�algorithm �see ��� for details��

gate inputs� The solution formula is constructed out of ex�
ternal signals and the immediate input signals to the part
of the circuit that is going to be substituted�

comp inputs� The solution formula is constructed out of
external inputs and the input signals of the component
where the modi�cation occurs�

precomputation

Possible values� on� off

Default value� off

Purpose� If precomputation is enabled� the recti�cation�algorithm im�
mediately computes a solution whenever a recti�able sub�
component has been localized� If precomputation is disabled�
solution�computation is delayed and only computed after a spe�
ci�c solution has been selected with the solution command
described in Section ���� Precomputation can be switched o�
for rectifying large designs� This can accelerate the recti�ca�
tion process considerably� However� to estimate the quality of
a solution� we have to count the number of modi�cations that

	�



have to be applied to the implementation circuit� This can
only be done after the solution formulas have explicitely been
computed�

granularity

Possible values� low� medium� high

Default value� low

Purpose� The search granularity determines which parts of the imple�
mentation circuit are checked for recti�ability� We distinguish
three types of di�erent circuit�recti�cations�

	� recti�cations that substitute an output�signal of some
component

�� recti�cations that substitute an input�signal of some com�
ponent

�� recti�cations that substitute an inner part of a compo�
nent

According to the selected search granularity� only recti�cations
of a speci�c type are computed� In particular�

� low granularity only computes type 	 recti�cations

� medium granularity only computes type 	 and type �
recti�cations

� high granularity computes all types of solutions

� Additional Tools

AC�� provides two additional tools for

� statistical analysis of the input �les

� converting ISCAS�
 format

Statistical Analysis

Usage� statistics file

Purpose� The statistics tool parses the speci�ed input �le and �rst per�
forms some consistency checks� Besides searching missing sig�
nal de�nitions� the input circuit is checked for loop�freeness�
After checking consistency� some statistical information is com�
puted� i�e��

� the number of logical connectives�

� the number of internal references� and

� the input cones�

�the set of external input variables occuring in the de�nition of the observed signal�

	�



are determined for each output signal of the main component�

Converter from ISCAS�� format

Usage� conv�� file

Purpose� Reads in the speci�ed �le in ISCAS�
 format and prints it in
the input language of AC�� to stdout� See Section ��	 for a
detailed description of the input language� The ISCAS�
 con�
verter allows to get access to a broad range of circuits �e�g��
the ISCAS�� benchmarks ��� and the Berkeley benchmarks cir�
cuits �����

	




A Copyright Notice� License� and Disclaimer

AC�
 V����b

�����������

Author� Dirk Hoffmann

email� hoff!ira�uka�de

WWW� http���goethe�ira�uka�de��hoff

COPYRIGHT NOTICE� LICENSE AND DISCLAIMER�

�Copyright ���� University of Karlsruhe �TH�

Permission to use� copy� modify� and distribute this software

and its documentation for any purpose and without fee is hereby

granted� provided that the above copyright notice appears in all

copies and that both the copyright notice and this permission

notice and warranty disclaimer appear in supporting

documentation�

Permission to use� copy� modify� and distribute files written by

others� must be obtained from the authors of those files�

Dirk Hoffmann disclaims all warranties with regard to this

software� including all implied warranties of merchantability

and fitness� In no event shall Dirk Hoffmann be liable for any

special� indirect or consequential damages or any damages

whatsoever resulting from loss of use� data or profits� whether

in an action of contract� negligence or other tortious action�

arising out of or in connection with the use or performance of

this software�

��



References

�	� D� Brand� Veri�cation of Large Synthesized Designs� In IEEE�ACM Inter�
national Conference on Computer Aided Design 	ICCAD
� pages ��� ����
Santa Clara� California� November 	

�� ACM�IEEE� IEEE Computer So�
ciety Press�

��� R�K� Brayton� G�D� Hachtel� C�T� McMullen� and A�L� Sangiovanni�
Vincentelli� Logic Minimization Algorithms for VLSI Synthesis� The Kluwer
International Series in Engineering and Computer Science� Kluwer Acad�
emic Publishers� 	
���

��� F� Brglez and H� Fujiwara� A neutral netlist of 	� combinatorial bench�
mark circuits and a target translator in FORTRAN� In Int� Symposium
on Circuits and Systems� Special Session on ATPG and Fault Simulation�
	
���

��� R�E� Bryant� Graph�Based Algorithms for Boolean Function Manipulation�
IEEE Transactions on Computers� C���������� �
	� August 	
���

��� R�E� Bryant� Symbolic boolean manipulation with ordered binary decision
diagrams� ACM Computing Surveys� �������
� �	�� September 	

��

��� A� Gupta� Formal Hardware Veri�cation Methods� A Survey� Journal of
Formal Methods in System Design� 	�	�	 ���� 	

��

��� D� W� Ho�mann and T� Kropf� Using BDD�based decomposition for au�
tomatic error correction of combinatorial circuits� Technical Report ��

�
University of Karlsruhe� March 	


�

��� Alan J� Hu� Formal hardware veri�cation with BDDs� An introduction� In
IEEE Paci�c Rim Conference on Communications� Computers� and Signal
Processing 	PACRIM
� pages ��� ���� October 	

��

�
� S�M� Reddy� W� Kunz� and D�K� Pradhan� Novel Veri�cation Framework
Combining Structural and OBDD Methods in a Synthesis Environment� In
ACM�IEEE Design Automation Conference� pages �	� �	
� 	

��

�	


