Using BDD-based Decomposition for
Automatic Error Correction
of Combinatorial Circuits*

Dirk W. Hoffmann and Thomas Kropf

Institute for Computer Design and Fault Tolerance,
Prof. D. Schmid
University of Karlsruhe, D-76128 Karlsruhe, Germany
hoffQ@ira.uka.de kropfQira.uka.de
http://goethe.ira.uka.de/hvg

Abstract. Boolean equivalence checking has turned out to be a powerful
method for verifying combinatorial circuits and has been widely accepted
both in academia and industry.

In this paper, we present a method for localizing and correcting errors in
combinatorial circuits for which equivalence checking has failed. Our ap-
proach is general and does not assume any error model. Working directly
on BDDs, the approach is well suited for integration into commonly used
equivalence checkers.

Since circuits can be corrected fully automatically, our approach can save
considerable debugging time and therefore will speed up the whole design
cycle.

We have implemented a prototype verification tool and evaluated our
method with the Berkeley benchmark circuits [7]. In addition, we have
applied it successfully to a real life example taken from [11].
keywords: Automatic error correction, equivalence checking, BDDs,
fault diagnosis

1 Introduction

In recent years, formal verification techniques [12] have become more and more
sophisticated and for several application domains they have already found
their way into industrial environments. Boolean equivalence checking [13,4, 16],
mostly based on BDDs [8,9], is unquestionably one of these techniques and is
usually applied during the optimization process to ensure that an optimized cir-
cuit still exhibits the same behavior as the original “golden” design. When using
BDDs for representing boolean functions, the verification task mainly consists
of creating a BDD for the boolean function of each output signal. Then, due to
the normal form property of BDDs, both signals implement the same function
if and only if they have the same BDD representation. Hence, equivalence can
be decided by simply comparing both BDDs.

* This work is supported by the ESPRIT LTR Project 26241

A major requirement for successful application of formal methods in indus-
trial environments is the ability of a verification tool to provide useful infor-
mation even when the verification attempt fails. Thus the application domain
of formal verification is no longer restricted to proving correctness of a specific
design, but can also serve as a powerful debugging technique and therefore help
speeding up the whole design cycle.

If equivalence checking fails, most verification tools only allow to compute
a counterexample in the form of a combination of input values for which the
output of the optimized circuit differs from its specification. Therefore, in many
cases it remains extremely hard to detect the error causing components. Coun-
terexamples as produced by most equivalence checkers can only serve as hints for
debugging a circuit, while a deeper understanding of the design is still needed.

In recent years, several approaches have been presented for extending equiv-
alence checkers with capabilities not only to compute counterexamples, but to
locate and rectify errors in the provided designs. The applicability of such a
method is strongly influenced by the following aspects:

Which types of errors can be found ?

Does the method scale to large circuits ?

— How many modifications in the original circuit are required to achieve a
correct result ?

— Does the method perform well if both circuits are structurally different ?

Earlier research in the area of automatic error correction mostly focused on
localizing single gate errors (“single error assumption”). Most of this work [21,
10,18,19,22,20] assumes a concrete error model based on a classification of
typical design errors (e.g. [1]). Errors are divided into gate errors (missing gate,
extra gate, wrong logical connective) and line errors (missing line, extra line).
Each gate is basically checked against these error classes and only circuits with
a single gate or line error can be rectified.

In [15] and [14], no error model is assumed. The method presented in [15]
propagates meta-variables through the circuit. Erroneous single gates are deter-
mined by solving formulas in quantified propositional logic. However, the method
is very time consuming and needs to invoke a propositional prover.

In [14], the implementation circuit and the specification circuit are searched
for equivalent signal pairs and a back-substitution algorithm is used for rectifying
the circuit. The success of this method highly depends on structural similarities
between the implementation and the specification.

Incremental synthesis [3,5] is a field closely related to automatic error cor-
rection. An old implementation, an old specification, and a new specification are
given. The goal is to create a new implementation fulfilling the new specification
while reusing as much of the old implementation as possible. In [5], structural
similarities between the new specification and the old specification are exploited
to figure out subparts in the old implementation that can be reused. The method
is based on the structural analysis technique in [2] and the method presented
in [4] which uses a test generation strategy to determine equivalent parts in two
designs.

In this paper, we present a method for localizing and correcting errors in
combinatorial circuits based on boolean decomposition. Basically, we try to de-
termine the smallest component containing the erroneous parts in the optimized
circuit. Once such a component has been localized, a circuit correction is com-
puted and suggested to the designer. Circuit rectifications are computed in form
of a BDD and then converted back to a net-list description. This is in contrast
to techniques such as [14, 3, 5] which basically modify a given design by putting
the implementation and specification together and “rewiring” erroneous parts.

Unlike [21, 10, 18,19, 22, 20], our approach does not assume any error model.
Thus, arbitrary design errors can be detected. Moreover, computed solutions are
weighted by a cost function in order to find a minimal solution — a solution that
requires minimal number of modifications in the implementation.

Our method directly works on BDDs which eases the integration into state-
of-the-art equivalence checkers. Since we only make use of the abstract BDD
representation of the specification circuit, the success of our algorithm does not
depend on any structural similarity between the implementation and the spec-
ification. Therefore our technique can even be applied in scenarios where the
specification is given as a boolean formula or directly in form of a BDD. This
is in contrast to [14,3,5] where the result is highly influenced by the layout-
structure of the specification circuit.

Our approach is orthogonal to other verification techniques such as structure
comparison. Combining these techniques, our method can be applied to large
designs.

This paper is organized as follows: In Section 2, we give a brief introduction
to the theoretical background. Section 3 describes the boolean decomposition
algorithm and Section 4 shows how this algorithm is applied to locate and correct
erroneous parts of a circuit. Section 5 describes our prototype verification tool
and discusses several benchmark examples. We close our paper in Section 6 with
a summary and some remarks about further research.

2 Preliminaries

In the following, f,g,h, ... denote propositional formulas and X,Y, Z, ... repre-
sent propositional variables. We use the symbol = to denote logical equivalence
between propositional formulas while = is used for expressing syntactical simi-
larity.

A wariable instantiation o maps every propositional variable to one of the
truth values 0 or 1. o f is the formula obtained from f by replacing all variables
by the truth value assigned by o. Since o f does no longer contain any variable,
either of =0 or of =1 holds.

The positive and negative cofactor of f, written as f|x and f|.x, represent
the functions obtained from f where X is substituted by the truth values 1 and
0, respectively. A formula f is said to be independent of X, if f|x = f|-x-

f1g4 represents some boolean function that agrees with f for all valuations
which satisfy g. For all other valuations, f|, is not defined and can be chosen
freely.

Formulas can naturally be represented in form of syntax-trees or directed
acyclic graphs if we allow to share sub-terms. Inner nodes are labeled with logical
connectives while leafs are labeled with propositional variables. Let f and g be
two formulas and v be a node in the syntax-graph of f. f[v < g] denotes the
formula created from the syntax-graph of f where node v has been replaced by
the syntax-graph of g. [v < g¢] is called a term-substitution.

BDDs [8,9] are a canonical representation of boolean functions. Formally,
we define a BDD as a triple (V, E,l) where (V, E) is a rooted, directed acyclic
graph with |V| < co. Every inner node has exactly two successor nodes called
then(v) and else(v). The labeling function I labels every leaf node v € V' with an
element [(v) € {0,1} and every inner node with a propositional variable. Every
BDD depends on an ordering on the propositional variables occurring in it and
must fulfill the ordering condition I(v;) < I(v2) for every edge (v1,vs) € E.

Every node of a BDD B containing n propositional variables recursively de-
fines a corresponding boolean function fF: {0,1}" — {0,1} by

5 I[(v) if v is a leaf
[l(v) A fﬁwn(v)] \Y% [—ll(v) A f?lse(v) otherwise

We intuitively identify any BDD with the boolean function induced by its root
node.

If isomorphic sub-trees are merged and nodes v with then(v) = else(v) are
eliminated, it can be shown [8] that for each fixed variable ordering, the resulting
graph is a canonical representation for propositional formulas. In the rest of
this paper, we implicitly assume that all BDDs are given in their canonical
representations.

3 A BDD-based Decomposition-Algorithm

Assume we are given three propositional formulas f,g, and h. The pair (g, h) is
called a decomposition of f, if there exists a variable X in g with

f=glX < h] (1)

If formulas f, g, and variable X are given, the decomposition problem is to
compute a formula h satisfying (1).

Ezample 1. Consider f = (AAB)VAand g= AV X. (9,ANAB) and (g,A4)
are both decompositions of f since f = g[X + (AA B)] and f = g[X + A].
Assuming g = C' A X, there exists no decomposition for f since there is no term
h such that f = g[X « h].

Example 1 shows that if a decomposition exists, there are usually more than
one solution.

The question if there exists a decomposition can be decided according to the
following lemma:

Lemma 1. Let f and g be two propositional formulas. X is a variable occurring
in g. Then, there ezists a formula h with f = g[X < h] if and only if

FA(gl-x ¢ glx) =g A (9l-x © g|x) (2)

Proof. First, we proof the direction from left to right. We have to show that (2)
holds for all variable instantiations o. We distinguish two cases: If o(g|-x) #
o(g|x), equation (2) is trivially true. If o(g|-x) = o(g|x), the value of og is
independent of X and therefore g = 0(g|-x) = 0(¢g|x). Knowing f = g[X «
h], we can conclude o f = o(g[X < h]) = og and therefore (2) holds as well.

For the direction from right to left, we partially define h for all variable
instantiations o with o(g|-x) # o(g|x) as

_ [0 i olgl-x)=of
on={ it ooy o7 @

Again, we distinguish two cases. If o(g|-x) = 0(g|x), equation (2) reduces to
of = og and since og is independent of X, we know of = o(g[X <« h]). If
o(g|l-x) Zo(g|lx), we get o(g[X « h]) = 0(9[X < oh]) = of by the definition
of h.

Lemma 1 reflects the idea that we can find some h with f = g[X « h]
iff f and g agree on all valuations that are independent of X (expressed by
gl-x ¢ g|x). For all other valuations, we can construct h according to equation

Assuming that all propositional formulas are represented via BDDs, Lemma
1 shows how decomposability can be decided by simply applying basic BDD
operations to f and g¢. Using BDDs, these operations have computation time
which is polynomial in the number of BDD-nodes.

Now, we provide a simple algorithm computing a term h with f = g[X « h]
if f and ¢ are decomposable. The algorithm takes BDDs for f, g, and X and
returns a BDD for h. Variable X always has to be the last variable in the current
variable ordering. This assumption is crucial for the algorithm to compute correct
results. Figure 1 shows the algorithm in more detail.

The following lemma states the correctness of the decomposition-algorithm.

Lemma 2. Assume f and g are decomposable in respect to variable X. Then,
decompose(f, g, X) computes a function h with g[X < h] = f.

Proof. We proof the theorem by structural induction on the BDD of g. Base
cases: 1. g is a leaf-node (either labeled with 0 or 1): Since f and g are decom-
posable, there exists some h' with f = g[X < h']. Because g is a leaf node, its
truth-value does not depend on X. Hence, f = g[X < W' =g[X < h]. 2. If gisa

function decompose (f : BDD, g : BDD, X : VAR) — (h : BDD)

begin
if g=0 return 0
if g=1 return 0
if g=X return f
if g=-X return —f

v:=1(g) // root-node-label of g
hi1 := decompose(f|v, g|v)
hs := decompose(f|-v, g|-v)
h:=(wAh1)V (-vAhs)
return h

end

Fig. 1. BDD-based decomposition-algorithm

node labeled with X, we know that ¢ = X or g = =X since X is the last variable
in the variable ordering. Thus, if g = X, we get g[X < h] = X[X « f]= f. On
the other hand, if g = =X, we get g[X + h] = (- X)[X + ~f] = f.

Induction step: Assume f|, = g|,[X < hi] and f|-, = g|-[X < h2]. Then,

glX < h] = ((vAgly) V(=0 Agl)[X « R
= WAgLX + (WAh)V(vAQ)])V
(=0 A gl-w[X < (VA h)V (70 A h)])

Now, we perform case split on v.
v=0:g[X < b =g|l-w[X < h]=flw=@Afl,) V(-0 A fl-) = f.
v=1:g[X < h] = g|o[X ¢+ hi] = flo = WA flo) V(70 A flw) = f.
In both cases, we get g[X < h] = f which had to be proved.

Using cofactor computation, conjunction, and disjunction, the function re-
turned by the decomposition-algorithm can be computed directly according to
the following lemma. Although less intuitive, this lemma allows to compute the
result much faster than algorithm 1, especially when dealing with large BDDs.

Lemma 3. Assume f and g are decomposable in respect to variable X. Then,

decompose(f, 9, X) = (g9lx A fA—(gl-x)) V (=(glx) A=f Agl-x) (4)

Proof. Base case: If ¢ =0 or g = 1, both sides of (4) are equivalent to 0.

If g =X, we get X|Xf—|(X|ﬁx)V—|(X|X)—|fX|ﬁX =fVvOAf)=T.

If g =-X, we get “X|xf-(-X|-x)V-(-X|x)~f-X|-x =(OAf)V-f =~f.
Induction step:

aecompose(f, g, X) = (1 A decompose(flu, gls)) V (- A decompose(f gl)
= v(glox flo(glo-x) V 2(glox) flugle-x) V
'U(g|—|vX.f—'v'(g|—|v—uX) \ _'(g|—|vX)_'f—'vg|—|v—|X)

DW)

b \) = A
—_—

Fig. 2. The left picture shows some circuit-layout and the right picture shows the
corresponding syntax-graph. Using directed acyclic graphs leads to a one-to-one corre-
spondence between the circuit-layout and the formula-graph.

o(glx f=(g9l-x) V =(glx)=fgl-x)]e V
—v(glx f=(gl-x) V =(glx)~fgl-x)|-v
glx f~(gl-x) vV =(glx)~fgl-x

4 Using Boolean Decomposition for Circuit-Rectification

In the following, assume we are given two circuits spec and imp. Let the propo-
sitional formulas f and g represent some output-signal of spec and imp, respec-
tively, for which equivalence checking has failed (thus, f # g¢). Further assume
that formula g is directly extracted from its corresponding circuit description and
represented in form of a directed acyclic graph. Using a syntax-graph instead
of a syntax-tree leads to a one-to-one correspondence between the circuit-layout
of imp and the syntactical representation of g (see Fig. 2). Whenever we talk
of a circuit or net-list in the rest of this paper, we implicitely assume that it is
represented in form of its corresponding syntax-graph.

Formula f is represented in form of a BDD only, since we exclusively make use
of the abstract BDD representation of the specification circuit. Thus, computed
results are totally independent of the layout-structure of spec. Since we do not
consider the net-list of spec at all, our approach can even be applied in scenarios
where the specification is given as a boolean formula or directly in form of a
BDD.

Our goal is to modify the syntax-graph of g with a minimal number of changes
such that f = ¢ holds. Each such modification is called a rectification of g:

Definition 1. Assume we are given two propositional formulas f and g with
f Z g- & denotes some node in the syntax-graph of g. g is called rectifiable at &
iff there exists a formula h with

f=gl§ < hl (5)

The substitution of £ by h is called a rectification of g.

The number of changes we have to apply to a given circuit is a crucial issue
when computing rectifications since we want to preserve as much of the circuit
structure as possible. In principle, we can always correct a wrong implementation
by substituting the whole circuit by a DNF-representation of the specification-
formula. Obviously, this is far away from what a designer would accept as circuit
correction.

In practice, however, it is often possible to localize a comparably small sub-
component containing all error-causing parts. This is obviously true, e.g., for all
circuits fulfilling the single-error assumption. However, even if multiple errors
occur in a given design, they are often concentrated in a single sub-component.
Substituting this component can correct the circuit while preserving most of the
circuit structure.

4.1 The Rectification Method

Our rectification-procedure is based on the boolean decomposition algorithms
presented in Section 3 and mainly consists of two steps: the location of erroneous
sub-components and the computation of circuit corrections.

For locating erroneous sub-components, we first try to figure out rectifiable
sub-graphs in g. For doing this, we traverse the syntax-graph of ¢ starting from
the root. This directly corresponds to a back traversal of the circuit net-list
starting from the corresponding output-signal.

For each node £, we determine if g can be rectified at £. According to Def-
inition 1, we have to check if there is a formula h such that g[¢ < h] is logical
equivalent to the specification formula f.

Replacing the sub-graph at ¢ by a newly introduced variable X, we can easily
perform this test by checking if there exists a term h such that (g[¢ < X], h) is
a decomposition of f. For doing this, we first create a BDD-representation for
f and g[¢ < X]. Then, according to Lemma 1, decomposability can be decided
easily by applying elementary BDD operations.

For computing circuit corrections, we first apply lemma 3 to compute a for-
mula h such that g[X < h] = f. Since the algorithm only computes h in form of
a BDD, it has to be converted back into a syntax-graph before the rectification
can be applied to the circuit. This conversion, however, directly influences the
resulting circuit structure and in order to minimize the number of modifications

in g, we try to reuse as many sub-graphs of g as possible. Assume ¢y, ..., g, are
the sub-graphs of g we want to reuse. Hence, our goal is to create a syntax-graph
for h containing g1,...,gn.

To achieve this, we construct a second BDD A’ as shown in Fig. 3. G1,...,G,

are newly introduced BDD variables.
Since for all m,
Bigin..gm—1 = Gmbigin gm 1 Agm ¥V T9mBigi A g1 A=gm
= (Gmbhyginegm-1Agm VY "Gmhigi g1 A9,) [Gm < Gm]

the newly constructed BDD A’ in Fig. 3 is logical equivalent to h if we substitute
Gi,...,G, by g1,...,gn, respectively.

hl91/\92A---Agn hl91/\92A---Aﬁgn hlﬁgl/\ﬁng---Agn hlﬁ91/\ﬁg2/\---/\ﬁgn

Fig. 3. Reuse of sub-graphs. Variables G1,...,G, denote newly introduced meta-
variables representing sub-graphs gi,..., gn, respectively.

A crucial issue in the construction process is to check the possibility if A
can be exclusively constructed out of g1, ..., g, and the logical connectives A, V,
and —. If A has this property, the sub-BDDs h ¢ in Fig. 3 can always be simplified
to 0 or 1. Then, A’ only contains the meta-variables G, ..., G,. This property
becomes important when dealing with hierarchical circuit descriptions. If we
have located an erroneous sub-component in a circuit, we first try to replace it by
another component that does not require changes in the component-interfaces.
Thus, after computing a circuit correction h, we first try to convert h to a formula
only involving the current component inputs as sub-terms. Every solution that
keeps the component-interfaces unchanged is called structure preserving.

5 A Prototype Verification System

We have implemented a prototype equivalence checker integrating the meth-
ods and algorithms presented in this paper. Both the specification-circuit and
the implementation-circuit have to be provided in an input language basically
reflecting hierarchical net-list structures. A hierarchical description is achieved
by defining various components. Each component consists of an interface part
declaring input and output-variables as well as a module body. Besides addi-
tional component definitions for each sub-component, the module body contains
a boolean formula for each output-variable defining its behavior in terms of
input-variables and sub-component outputs.

As a toy-example, Fig. 4 shows the description of a two-bit carry-ripple adder.
The circuit has four global input-signals aj, as, b1, by and three output signals
¢1,C2,cs. Using a half-adder (component H_ADDER) and a full-adder (component
FULL_ADDER), the circuit computes the sum (cscac1) = (azar) + (b2b1).

The specification is shown in Fig. 5. Unlike the implementation, the spec-
ification defines its output-signals by boolean functions being derived directly
from the truth-table of boolean addition.

COMPONENT CARRY_RIPPLE_ADDER (al,a2,b1l,b2) --> (c1,c2,c3)
COMPONENT H_ADDER (a,b) --> (sum,carry)
sum := (a <> b);
carry := (a /\ b);

END
COMPONENT FULL_ADDER (a,b,c) --> (sum,carry)
sum := a XOR b X0R c;
carry := (@ /\ b) \/ (@ /\ o) \/ (b /\ c);
END
H_ADDER.a := al;
H_ADDER.b := bil;

FULL_ADDER.a := a2;
FULL_ADDER.b := b2;
FULL_ADDER.c := H_ADDER.carry;
H_ADDER. sum;

cl :=
c2 := FULL_ADDER.sum;
c3 := FULL_ADDER.carry;

END

Fig. 4. Example: A two bit Carry-Ripple-Adder

COMPONENT CARRY_RIPPLE_ADDER (al,a2,bl,b2) --> (c1,c2,c3)
cl := (al XOR bl);

c2 := (a2 XO0R b2) XOR (a1l /\ bl);
c3 := (a2 /\ b2) \/ (a1 /\ b2 /\ b1) \/ (al /\ a2 /\ bl);
END

Fig. 5. Specification for the 2-bit adder-circuit.

After starting the equivalence checker, circuit-descriptions are parsed and
converted into an internal representation. The user can then specify a pair of
output-signals that are going to be compared. After calling the verification pro-
cedure, BDD representations for both output-signals are created. If the BDDs
are different, the rectification algorithm as described in Section 4 is invoked and
circuit corrections are computed.

Referring to our example, signals ¢ and ¢z can be proven to be equivalent on
the first try. However, for signal ¢;, equivalence checking fails and the verification
tool tries to rectify the circuit automatically. Restricting ourselves to structure-
preserving solutions, the verifier computes 6 different circuit corrections. For each
solution, name of the sub-component to be modified and the number of required
changes are displayed. The solution are weighted by a cost-function counting the
number of modifications which have to be applied to the circuit. The solution
that requires the minimal number of changes is displayed first. After the circuit
has been rectified automatically, it can can be written back to a file.

Table 1 gives a summary of the computed solutions for the carry-ripple adder
in Fig. 4. The second and third column contain name of the sub-component and

name of the signal to be modified, respectively. Column 4 reminds the old signal
definition while column 5 shows the suggested replacement.

|Nr|Component |Signal ||old deﬁnition|suggested replacement
1|H_ADDER sum a<b a ¢ b
2|H_ADDER sum a$b —a b
3|CARRY_RIPPLE_ADDER|H_ADDER.Db|(b1l —bl
4|CARRY_RIPPLE_ADDER|H_ADDER.a||al —-al
5|H_ADDER sum asrb (aA=b)V (-aAb)
6|CARRY_RIPPLE_ADDER|c1 H_ADDER. sum |—=H_ADDER.sum

Table 1. Suggested circuit corrections for the carry-ripple adder.

Comparing Table 1 with the circuit-description in Fig. 4, it turns out that
the major design error has been made in component H_ADDER. Output-signal sum
computes a false value due to a wrong logical connective. Instead of perform-
ing an XOR-operation, the equivalence operator is applied. Solution 5 exactly
suggests to replace this logical connective, but all other solutions also correct
the circuit even if some of them actually do not reflect the designer’s original
intention. Since the verification tool does not have any semantical knowledge
about the half-adder, it cannot distinguish between these solutions. In general,
the solution that requires the minimal number of changes in the original circuit
is considered best. Solutions 1 to 4 show that the circuit can even be rectified
by inserting one additional NOT gate only.

A crucial aspect of the method is that only the abstract BDD of the specifi-
cation is considered during the rectification-process. Therefore, the structure of
the specification-circuit does not at all influence the computed solutions. Each
specification-circuit — it’s correctness assumed — causes the verifier to produce
exactly the same results.

Table 2 shows measured data for the Berkeley benchmark circuits [7]. Ar-
bitrary single gate errors have been introduced into the circuits and have been
checked against the original designs. Column rectification time shows the elapsed
time for analyzing and rectifying the circuit measured on a SUN Sparc Ultra 10
with 300 MHz and 128 MB main memory. Memory usage is shown in column
total BDD nodes.

We also applied our method to a Galois-Field multiplier presented in [11]
which we had to verify recently. When we first applied standard equivalence
checking, verification failed and a deeper understanding of the multiplier had
become necessary for correcting the circuit. Using our rectification-procedure,
we have instantly been able to locate a missing NOT gate in the circuit layout
shown in Fig. 3 in [11] whereas tedious manual search had been necessary before.
The circuit could be rectified immediately (example GFmult in Table 2) and a
lot of debugging time had been saved.

In general, runtime and memory usage of our method are mainly influenced
by two factors: the number of input signals and the number of internal gates.

Since for some classes of formulas, BDDs grow exponentially in the number of
input-signals, this value is the most limiting factor both for memory usage and
runtime. The number of gates is also an important value since the rectification
approach traverses the netlist and computes a BDD for each node in the graph.
Thus, the number of gates considerably influences runtime of our approach es-
pecially when dealing with huge BDDs.

Our approach can be combined with other verification-techniques like
structure-comparison and is therefore well suited for being integrated into state-
of-the-art verification tools. A promising scenario is to eliminate similar parts of
a circuit via structure-analysis and then to apply the rectification algorithm. In
combination with these techniques, we believe that our method is applicable to
industry-size examples.

| name |inputs|gates| signal |rectiﬁcation time|total BDD nodes|

GFmult 6 8| c-out < 0.01 sec 217
misj 35| 57| 91_out 0.01 sec 152
exep 29| 386| 7l-out 0.01 sec 868
vg2 25| 84| 28_out 0.14 sec 9496
x1ldn 27| 108| 32_out 0.14 sec 11294
x9dn 27 89| 31_out 0.20 sec 11958
x6dn 38| 285| 42_out 0.89 sec 40791

jbp 36| 397| 87_-out 0.58 sec 21409
chkn 29| 511|539_out 0.83 sec 39608
signet 39| 240| 40-out 2.97 sec 224291
in6 33| 188| 41_out 0.12 sec 7604
in7 26| 143| 31_out 0.21 sec 13335
in3 34| 302| 49_out 0.43 sec 16501
ind 24| 213| 25_out 0.72 sec 37054
in 32| 568| 33_-out 5.10 sec 162697
cps 24| 936(942_out 4.86 sec 174852
bc0 21| 952|927_out 8.21 sec 134424

Table 2. Experimental results. GFmult is taken from [11]. All other examples are
taken from [7].

6 Summary

We have presented a method for localizing and correcting errors in combinatorial
circuits for which equivalence checking has failed.

Unlike most other approaches, our method does not assume any error model.
Thus, arbitrary design errors can be found. Our method is split into two parts:
the location of erroneous subcomponents and the computation of circuit correc-
tions. For both tasks, we have presented efficient solutions based on boolean
decomposition. Working directly on BDDs eases the integration into commonly
used equivalence checkers as a debugging back-end.

When computing circuit corrections, our approach tries to reuse as many
parts of the old circuit as possible in order to minimize the number of modifica-
tions and therefore to increase the quality of the computed solutions.

We have implemented the presented methods in a prototype verification tool
and evaluated it with the Berkeley benchmark circuits [7]. In addition, we have
applied our method successfully to a real life example taken from [11]. Our
method is powerful if the error causing elements are concentrated in a compara-
bly small subpart of the circuit since our algorithm tries to locate the smallest
subcomponent containing the erroneous components. This is obviously true, e.g.,
for all circuits fulfilling the single error assumption. Computed solutions are more
expensive if the errors are widespread all over the circuit.

Our approach is orthogonal to other verification techniques such as structure
comparison. Thus, the approach is well suited for being integrated into state-
of-the-art verification tools. Combining these techniques, our approach can be
applied to large designs.

In future, we plan to extend the verification system with front-ends for other
input languages, such as BLIF [6] or PURR [17] to obtain access to a variety of
example circuits. We further plan to incorporate our method in the PROSPER!
project which aims at the integration of different proof tools into a higher-order
logic environment. PROSPER tries to achieve a higher degree of automation and
explicitly focuses on reducing the gap between formal verification and industrial
aims and needs.

References

1. M.S. Abadir, J. Ferguson, and T.E. Kirkland. Logic design verification via test
generation. IEEE Transactions on CAD, 7(1):138-148, January 1988.

2. D. Brand. The taming of synthesis. In International Workshop on Logic Synthesis,
RTP, May 1991.

3. D. Brand. Incremental synthesis. In Proceedings International Conference on
COmputer Aided Design, pages 126 — 129, 1992.

4. D. Brand. Verification of Large Synthesized Designs. In IEEE/ACM International
Conference on Computer Aided Design (ICCAD), pages 534-537, Santa Clara,
California, November 1993. ACM/IEEE, IEEE Computer Society Press.

5. D. Brand, A. Drumm, S. Kundu, and P. Narain. Incremental synthesis. In Pro-
ceedings Internation Conference on Computer Aided Design, pages 14-18, 1994.

6. R. K. Brayton, A. L. Sangiovanni-Vincentelli, A. Aziz, S.-T. Cheng, S. Edwards,
S. Khatri, Y. Kukimoto, S. Qadeer, R. K. Ranjan, T. R. Shiple, G. Swamy, T. Villa,
G. D. Hachtel, F. Somenzi, A. Pardo, and S. Sarwary. VIS: A system for verification
synthesis. In Computer-Aided Verification, New Brunswick, NJ, July-August 1996.

7. R.K. Brayton, G.D. Hachtel, C.T. McMullen, and A.L. Sangiovanni-Vincentelli.
Logic Minimization Algorithms for VLSI Synthesis. The Kluwer International Se-
ries in Engineering and Computer Science. Kluwer Academic Publishers, 1986.

8. R.E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, C-35(8):677-691, August 1986.

! http://www.dcs.gla.ac.uk/prosper/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

R.E. Bryant. Symbolic boolean manipulation with ordered binary decision dia-
grams. ACM Computing Surveys, 24(3):293-318, September 1992.

P.Y. Chung, Y.M. Wang, and I.N. Hajj. Diagnosis and correction of logic design
errors in digital circuits. In Proceedings of the 30th Design Automation Conference
(DAC), 1993.

W. Drescher and G. Fettweis. VLSI Architectures for Multiplication in GF(2™)
for Application Tailored Digital Signal Processors. In Workshop on VLSI Signal
Processing IX, San Francisco / CA, 1996.

A. Gupta. Formal Hardware Verification Methods: A Survey. Journal of Formal
Methods in System Design, 1:151-238, 1992.

Alan J. Hu. Formal hardware verification with BDDs: An introduction. In IEEE
Pacific Rim Conference on Communications, Computers, and Signal Processing
(PACRIM), pages 677—682, October 1997.

S.Y. Huang, K.C. Chen, and K.T. Cheng. Error correction based on verification
techniques. In Proceedings of the 83rd Design Automation Conference (DAC),
1996.

J.C. Madre, O. Coudert, and J.P. Billon. Automating the diagnosis and the rec-
tification of design errors with PRIAM. In Proceedings of ICCAD, pages 30-33,
1989.

S.M. Reddy, W. Kunz, and D.K. Pradhan. Novel Verification Framework Combin-
ing Structural and OBDD Methods in a Synthesis Environment. In ACM/IEEE
Design Automation Conference, pages 414-419, 1995.

K. Schneider and T. Kropf. The CQS system: Combining proof strategies for
system verification. In T. Kropf, editor, Formal Hardware Verification — Methods
and Systems in Comparison, volume 1287 of Lecture Notes in Computer Science,
pages 248-329. Springer Verlag, state of the art report edition, August 1997.

M. Tomita and H.H. Jiang. An algorithm for locating logic design errors. In IEEE
International Conference of Computer Aided Design (ICCAD), 1990.

M. Tomita, T. Yamamoto, F. Sumikawa, and K. Hirano. Rectification of multiple
logic design errors in multiple output circuits. In Proceedings of the 31st Design
Automation Conference (DAC), 1994.

A. Wahba and D. Borrione. Design error diagnosis in sequential circuits. In
Springer Verlag, editor, Correct Hardware Design and Verification Methods, IFIP
WG 10.5 Advanced Research Working Conference, CHARME 95, volume 987 of
Lecture Notes in Computer Science, Frankfurt(M), Germany, October 1995.

A. Wahba and D. Borrione. A method for automatic design error location and
correction in combinational logic circuits. Journal of Electronic Testing: Theory
and Applications, 8(2):113-127, April 1996.

A. Wahba and D. Borrione. Connection errors location and correction in com-
binational circuits. In European Design and Test Conference ED&ETC-97, Paris,
France, March 1997.

