
ENZO

Evolution of Neural Networks

by

Heinrich Braun and Thomas Ragg

University of Karlsruhe

Institute for Logic, Complexity and Deduction Systems

User Manual and Implementation Guide, Version 1.0

ii CONTENTS

Contents

I Enzo User Manual 1

1 General Introduction 1

1.1 Introduction : 1

1.2 Enzo , - Our Evolutionary Approach : 2

1.3 Mutation : 4

1.4 Benchmarks : 5

1.4.1 TC problem : 5

1.4.2 Nine Men's Morris : 6

1.4.3 Thyroid gland : 7

1.4.4 Classi�cation of handwritten digits : : : : : : : : : : : : : : : : : : : 7

1.5 Conclusion : 8

2 Who should use Enzo 8

2.1 History and purpose of Enzo : 8

2.2 Where to get Enzo : 9

2.3 Mailing list : 9

3 Design and Interface of Enzo 9

4 Installing and running Enzo 10

4.1 Installation : 10

4.2 Running Enzo : 10

4.3 The command �le : 11

5 Module description 12

5.1 Pre-evolution : 12

5.1.1 Create an initial population : 12

5.1.2 Load a starting population : 13

5.1.3 Creating a population using the nepomuk library : : : : : : : : : : : : 14

5.1.4 Load standard SNNS pattern sets : 14

5.1.5 Learning during the pre-evolution : 15

5.1.6 Random selection of input units : 16

5.1.7 Look for the optimal number of hidden units. : : : : : : : : : : : : : : 16

5.1.8 Create a population of networks from one special network : : : : : : : 17

5.1.9 Random selection of weights : 18

5.1.10 Delete some rules from a neuro fuzzy net : : : : : : : : : : : : : : : : 19

5.2 Stopping condition : 19

5.2.1 Normal stopping : 19

5.2.2 Stopping by error : 19

5.3 Selection : 19

5.3.1 Uniform selection : 19

5.3.2 Selection of parents preferring the better networks : : : : : : : : : : : 20

5.4 Mutation : 20

5.4.1 A simple weight mutation : 20

CONTENTS iii

5.4.2 An other weight mutation : 21

5.4.3 Mutation of hidden neurons : 22

5.4.4 Mutation of the input units : 23

5.4.5 Mutation of rules in a neuro fuzzy network : : : : : : : : : : : : : : : 24

5.4.6 Mutation of weights in a neuro fuzzy network : : : : : : : : : : : : : : 27

5.5 Crossover : 28

5.5.1 Crossover of the connections between input- and output layer : : : : : 28

5.5.2 Implant a feature from the �ttest net in an o�spring : : : : : : : : : : 28

5.6 Optimization : 29

5.6.1 Learning stopped by periods or learning error : : : : : : : : : : : : : : 29

5.6.2 Learning stopped by periods or cross validation error : : : : : : : : : : 30

5.6.3 Delete all weights below a threshold : : : : : : : : : : : : : : : : : : : 31

5.6.4 Adaptive pruning : 32

5.6.5 Relearning : 32

5.6.6 Adding random distributed values : 32

5.6.7 Cleanup the structure of a net : 33

5.6.8 Delete o�springs without links : 33

5.7 Evaluation : 33

5.7.1 Evaluation of the topology : 33

5.7.2 Evaluation of the learning process : 34

5.7.3 Evaluation using the 40 - 20 - 40 method : : : : : : : : : : : : : : : : 34

5.7.4 Evaluation using the highest output : : : : : : : : : : : : : : : : : : : 35

5.7.5 Evaluation using the lowest output : 36

5.7.6 Evaluation through a cross validation set : : : : : : : : : : : : : : : : 37

5.7.7 Evaluation of the topology of a neuro fuzzy net : : : : : : : : : : : : : 37

5.8 History : 38

5.8.1 A simple version of saving all important informations : : : : : : : : : 38

5.8.2 Saving all informations about �tness of the networks : : : : : : : : : : 38

5.8.3 Saving all topology informations : 38

5.8.4 Saving all informations about the networks on the cross validation pat-

terns : 39

5.8.5 Family tree : 39

5.8.6 Simple X-Window history : 39

5.8.7 Used input units : 40

5.9 Survival : 40

5.9.1 Survival of the �ttest : 40

5.10 Post-evolution : 41

5.10.1 Storing networks after evolution : 41

5.11 Sample module : 41

5.11.1 My module title : 41

6 Adjusting parameters 41

II Enzo Implementation Guide 43

7 Design 43

iv CONTENTS

7.1 Extension of Enzo by own modules : 44

7.2 Dependencies between modules ? : 44

7.3 Sharing data : 44

8 Interfaces 44

8.1 Module interfaces : 45

8.2 The Nepomuk library : 45

8.3 Interface to a neural network simulator : 47

9 Implementation internals 48

9.1 Enzo : 48

9.2 Nepomuk : 49

9.3 Necessary changes in SNNS modules : 49

A An example command �le 51

1

Part I

Enzo User Manual

1 General Introduction

Summary

The construction of a neural network to a given problem speci�cation is a di�cult optimiza-

tion problem: Which topology (number of layers, number of units per layer, connectivity of

units) and which values for the network coe�cients (weights, threshold) gains the optimal

performance? Our evolutionary network optimizing system (Enzo) uses the paradigm of

evolution for optimizing the topology and the paradigm of learning for optimizing the coef-

�cients. Particularly, Enzo evolves a population of networks by generating o�springs thru

mutating the topology of the parent network and by optimizing the coe�cients with our fast

gradient descent algorithm RPROP. For measuring the performance (resp. the �tness) we can

use di�erent criteria: learning error (error on learning set), generalization capability (error

on the test set), hardware complexity (number of units and weights), runtime (number of

layers), etc. Using several heuristics for speeding up the training time of the o�springs Enzo

can e�ciently optimize even large networks with 5 000 weights and 50 000 training patterns.

1.1 Introduction

The basic principles of evolution as a search heuristic may be summarized as follows. The

search points or candidate solutions are interpreted as individuals. Since there is a population

of individuals, evolution is a multi-point search. The optimization criterion has to be one-

dimensional and is called the �tness of the individual. Constraints can be embedded in the

�tness function as additional penalty terms. New candidate solutions, called o�springs, are

created using current members of the population, called parents. The two most used operators

are mutation and recombination (crossover). Mutation means that the o�spring has the same

properties as its single parent but small variations. Whereas recombination (crossover) means

that the o�spring's properties are mixed from two parents. The selection of the parents is

randomly but biased, preferring the �tter ones, i.e. �tter individuals produce more o�springs.

For each new inserted o�spring another population member has to be removed in order to

maintain a constant population size. This selection can be done randomly or according the

�tness of each member. Particularly, that means in the �rst case that the expected lifetime

is equal for all members, whereas in the second case the �tter will live longer, i.e. the �ttest

may even survive for ever.

The design of neural networks incorporates two optimization problems. First of all the topol-

ogy, i.e. number of hidden units and their interconnection structure, and second the tuning

of the net work parameters i.e. weights. Therefore, we have to solve a mixed optimization

problem, discrete for the topology and continous for the network parameters. The standard

approach is to use the intuition of the designer for de�ning the topology and to use a learning

algorithms (e.g. gradient descent) for adjusting the free parameter.

2 1 GENERAL INTRODUCTION

The published results for using evolutionary algorithms for the parameter optimization in-

stead of gradient descent like backpropagation suggest, that this is only e�cient, when gra-

dient descent is not possible (e.g. activation function of neurons is not di�erentiable or the

interconnection structure is not feed forward but contains cycles) or unsuccessful for sparse

topologies, since gradient descent is much faster.

On the other hand, optimization of the topology incorporates optimization of the parameters,

since evaluating the �tness of a topology means evaluation of the network behavior for which

we need an optimal instantiation of the according network parameters (training). Meanwhile,

there are some published approaches which use evolution for the discrete topology optimiza-

tion and use gradient descent just for the �tness evaluation of the topology. Since training

rsp. gradient descent of a neural network is even for middle sized networks a time consuming

task, these investigations are limited to small networks. In the following we describe an hybrid

approach combining evolution and gradient descent such that even large networks with over

5000 conne ctions and training sets with over 50 000 patterns (ca. 3 Mbyte) can be e�ciently

handled.

1.2 Enzo , - Our Evolutionary Approach

Every heuristic for searching the global optimum of di�cult optimization problems has to

handle the dilemma between exploration and exploitation. Priorizing the exploitation (as

hill-climbing strategies do) bears the danger of getting stuck in a poor local optimum. On the

other hand, full explorative search which guarantees to �nd the global optimum, uses vast

computing power. Evolutionary algorithms avoid getting stuck in a local optimum by paral-

lelizing the search using a population of search points (individuals) and by stochastic search

steps, i.e. stochastic selection of the parents and stochastic generation of the o�springs (mu-

tation, crossover). On the other hand, this explorative search is biased towards exploitation

by biasing the selection of the parents preferring the �tter ones.

This approach has proven to be a very e�cient tool for solving many di�cult combinatorial

optimization problems (Goldberg, 1989, Reeves, 1993, Schwefel, 1995). A big advantage of

this approach is its general applicability. There are only two problem dependent issues: The

representation of the candidate solutions as a string (genstring = chromosome) and the com-

putation of the �tness. Even though the choice of an adequate representation seems to be

crucial for the e�ciency of the evolutionary algorithm, it is obvious that in principle both

conditions are ful�lled for every computable optimization problem.

On the other hand, this problem independence neglects problem dependent knowledge as e.g.

gradient information. Therefore the pure use of evolutionary algorithms may have only modest

results in comparison to other heuristics, which can exploit the additional information. For

the problem of optimizing feedforward neural networks we can easily compute the gradient

by backpropagation. Using a gradient descent algorithm we can tremendously diminish the

search space by restricting the search to the set of local optima.

This hybrid approach uses two time scales. Each coarse step of the evolutionary algorithm

is intertwined with a period of �ne steps for the local optimization of the o�spring. For this

approach there seems to be biological evidence, since at least for higher animals nature uses

the very same strategy: Before evaluating the �tness for mating, the o�springs undergo a

1.2 Enzo , - Our Evolutionary Approach 3

longer period of �ne tuning called learning. Since the evolutionary algorithm uses the �ne

tuning heuristic as a subtask, we can call it a meta-heuristic. Obviously, this meta-heuristic

is at least as successful as the underlying �ne tuning heuristic, because the o�springs are

optimized by that. Our experimental investigations will show, that the results of this meta-

heuristic are not only as good but impressively superior to the underlying heuristic.

In the natural paradigm the genotype is an algorithmic description for developing the pheno-

type, which seems not to be an invertible process, i.e. it is not possible to use the improvements

stemming from learning (�ne tuning) for improving the genotype as Lamarck erroneously be-

lieved. In our application however, there is no di�erence between genotype and phenotype,

because the matrix of weights, which determines the neural network, can be linearly noted

and interpreted as a chromosome (genstring). In this case Lamarck's idea is fruitful, because

the whole knowledge gained by learning in the �ne tuning period can be transferred to the

o�springs (Lamarckism).

The strengths of our approach stem mainly from this e�ect in two ways: Firstly, since the

topology of the o�springs is very similar to the topology of the parents transferring the

weights from the parents to the o�springs diminishes impressively the learning time by 1-

2 orders of magnitude (in comparison to learning from the scratch with random starting

weights). This also implies, that we can generate 1-2 orders of magnitude more o�springs in

the same computation time. Secondly, the average �tness of these o�springs is much higher:

the �tness distribution for the training of a network topology with random initial weights will

be more or less Gaussian distributed with a modest average �tness value whereas starting

near the parental weights (remind the topology of the o�spring is similar but not the same

as that of its parents) will result in a network with a �tness near the parental �tness (may be

worse or better). That means, whenever the parental �tness is well above the average �tness

(respectively its topology) then the same may be expected for its o�spring (in case using

the parental weights). Moreover, our experiments have shown for the highly evolved 'sparse'

topologies that with random starting weights the gradient descent heuristic did not �nd an

acceptable local optimum (solving the learning task), but only by inheriting the parental

knowledge and initializing the weights near the parental weights.

selection

training

mutation

evaluationranking

pruning
weight elimination
gradient descent
Lamarckism

unit mutation
weight mutation

crossoverexchange of hidden features

strategies to maintain diversity

or none (ENZO-M)

Figure 1: Evolution cycle of Enzo

Summarizing, our algorithm briey works as follows (cf. �g. 1). Taking into account the user's

speci�cations Enzo generates a population of di�erent networks with a given connection

density. Then the evolution cycle starts by selecting a parent, preferring the ones with a

4 1 GENERAL INTRODUCTION

high �tness ranking in the current population and by generating an o�spring as a mutated

duplication of this parent. If crossover is chosen, one or few hidden features (=hidden units)

of a second parent may be randomly added. Each o�spring is trained by the best available

e�cient gradient descent heuristic (RPROP, see (Riedmiller & Braun, 1993)) using weight

decay methods for better generalization. By removing negligible weights, trained o�springs

may be pruned and then re-trained. Being evaluated an o�spring is inserted into the sorted

population according to its determined �tness value, thereby removing the last population

element. Fitness values may incorporate any design criterion considered important for the

given problem domain.

1.3 Mutation

Besides of the widely used link mutation we also realized unit mutation which is well suited to

signi�cantly change the network topology, allowing the evolutionary algorithm to explore the

search space faster and more exhaustive. Our experiments show that unit mutation e�ciently

and reliably directs the search towards small architectures.

Within link mutation every connection can be changed by chance. The probability for delet-

ing a link should be correlated with the probability, that this deletion doesn't decrease the

performance signi�cantly. For that, we prefer links with small weights for deletion, whereas

the probability of adding is equal for all links:

Weighted Link mutation: For each link the probability to be deleted is pdel �N�(0; w) where

pdel and � are set by the user, N�(0; w) means a normal distributed value with mean 0 and

variance � und w denotes the absolute weight value of the considered link. The probability

for adding a link is padd constantly.

We may call this soft pruning, since not only the weights below the threshold � are pruned,

but very small weights (jwj << �) with probability about pdel, big weights (jwj >> �) with

probability about 0 and a soft interpolation in between. By the factor N�(0; w) we intent

to approximate the probability that the deletion of a link e�ects no signi�cant deterioration

of the performance. If we choose pdel such that only a few links are deleted by each weight

mutation we get the following heuristic:

Soft pruning: Test a few weights for pruning preferring small weights. Whenever this prun-

ing e�ects no signi�cant deterioration, this variant will survive and will be subject to more

pruning, - else this o�spring is classi�ed as failure and therefore not inserted in the population.

Therefore it is not necessary to estimate the e�ects of the deletion of a weight as is done by

other heuristics (e.g. optimal brain damage, optimal brain surgeon)|just try and test it.

In contrast to link mutation, unit mutation has a strong impact on the network's perfor-

mance. To improve our evolutionary algorithm we developed two heuristics which support

unit mutation: the prefer-weak-units (PWU) strategy and the bypass algorithm. The idea

behind the PWU-heuristic is to rank all hidden units of a network according to their relative

connectivity (act:connections
max:connections

) and to delete sparsely connected units with a higher probabil-

ity than strongly connected ones. This strategy successfully complements other optimization

techniques, like soft pruning, implemented in Enzo .

1.4 Benchmarks 5

a) b) c)

Figure 2: Bypass algorithm: a) original net-

work b) after deletion of the middle unit c)

with added bypass connections

The bypass algorithm is the second heuristic we realized. Other than adding a unit, deletion of

a unit can result in a network which is not able to learn the given training patterns. This can

happen because there are too few hidden units to store the information available in the train-

ing set. But even if there are enough hidden units, deleting a unit can destroy important data

paths within the network (�g. 2a and b). For that reason we restore deleted data paths before

training by inserting bypass connections (�g. 2c). By that, the nonlinear function computed

by the subpart of the neural network, which was connected to the deleted unit formerly, is

now approximated by a linear function using shortcuts (bypass connections). The application

of the bypass algorithm signi�cantly increases the proportion of successful generated by unit

mutation. Both the number of networks with devastated topologies decreases and the gener-

ated nets need less epochs to learn the training set, because they are not forced to simulate

missing bypass connections by readjusting the weights of the remaining hidden units.

1.4 Benchmarks

Some benchmark problems are distributed with Enzo , three simple benchmarks with only

a few minutes computing time necessary (TC-Problem,Encoder,XOR) and two larger bench-

marks (Spirals,Recogintion of digits). Some benchmarks are also described in the following.

Before using Enzo for larger problems, it is worth investigating some time in parameter tun-

ing of benchmark problems to get an impression on the inuence of single parameters and

the dependencies between parameters.

1.4.1 TC problem

The task is to correctly classify Ts and Cs given a 4x4 pixel input matrix (�gure 3, see also

(McDonell & Waagen, 1993)). The pattern set contains all possible Ts and Cs, that is they

can be translated and rotated. In total there are 17 Ts and 23 Cs. A straightforward network

uses the pixel representation as input units, has some hidden units and one output unit, that

classi�es Ts with 1 and Cs with 0. The topology of the network is than 16 � 16 � 1 with

full connection, i.e., 288 weights. Obviously the input layer contains redundant information.

6 1 GENERAL INTRODUCTION

The task for the genetic algorithm is to eliminate redundant input units and furthermore the

topology of the network, without any loss of classi�cation performance.

T or C ?

Figure 3: The �gure shows Ts and Cs represented with a 4x4 pixel matrix. In the bottom row, several

input units were cut o� (gray color). The network is still able to distinguish every T from every C.

Can you ?

The neural network that originally had nearly 300 links was already impressively reduced to

a 10-2-1 net with 27 links left by Enzo and in a second approach to 8-2-1 with only 18 links.

Reference topology #links

Original net 16-16-1 288

McDonnell 15-7-1 60

Enzo 94 10-2-1 27

Enzo 95 8-2-1 18

Table 1: TC-Problem. Note the de-

creased number of input units due to

input-unit-mutation.

1.4.2 Nine Men's Morris

With Enzo we investigated networks learning a control strategy for the endgame of Nine

Men's Morris. The table 2 shows the performance of three nets: the �rst network was the

best hand-crafted network developed just by using backpropagation (SOKRATES,(Braun et

al.,)), a second network was generated by Enzo (?) and a third network we got by Enzo

additionally rating the network size in the �tness function (?). Networks optimized by Enzo

1.4 Benchmarks 7

show a signi�cantly better performance than the original Sokrates net. Further, that superior

performance is achieved with smaller nets. Enzo was able to minimize the network to a 14-

2-2-1 architecture deleting not only hidden units but also the majority of the input neurons.

System topology #weights performormance

Sokrates 120-60-20-2-1 4222 0.826

Enzo -1 120-60-20-2-1 2533 1.218

Enzo -2 14-2-2-1 24 1.040

Table 2: Socrates was the best handcrafted network, the

�tness criteria for Enzo -1 was performance and for

Enzo -2 additionally network size.

1.4.3 Thyroid gland

Thyroid gland diagnostic is a real-world benchmark we used to test our algorithm [??]. This

task requires a very good classi�cation, because 92% of the patterns belong to one class. So a

useful network must classify much better than 92%. A further challenge is the large number

of training patterns (nearly 3800) which exceeds the size of toy problem's training sets by far.

The evolved network had the same performance as in [??], but 4 input units less and only

20% of the weights.

topology #weights performance

Schi�mann 21-10-3 303 98.4%

Enzo 17-1-3 66 98.4%

Table 3: Thyroid gland diagnostic, - decreasing

network size and removing redundant input units

without deteriorating performance

1.4.4 Classi�cation of handwritten digits

Classi�cation of handwritten digits was the largest problem we tackled with Enzo (?). We

compared the classi�cation performance of our evolved neural networks with that of a com-

mercially used polynomial classi�er of degree two. Trained on the same 50,000 pattern subset

of the NIST data base using the same features as the neural net the polynomial classi-

�er achieves a classi�cation rate of 99.06% correct. The results in table 4 shows that both

classi�cation approaches perform equally well. The major di�erence is in the number of free

parameters: while a 2nd degree polynomial classi�er uses 8.610 coe�cients our nets range from

less than 1,600 to 3,300 links. As a consequence the classi�cation time in practical application

is reduced to 20% of time needed by a PC. Another advantage is the possibility to obtain a

specialized net for a given time-accuracy tradeo�. By means of the �tness-function the user

can support the evolution of either nets with few links, risking a small drop in performance,

or more powerful nets with some links more.

8 2 WHO SHOULD USE ENZO

links correct #weights : misclassi�ed

892 98.05 1 : 2

1,648 98.71 1 : 5

3,295 99.16 1 : 1500

Table 4: Classi�cation of handwritten dig-

its, - evolved networks for di�erent ratings of

network size (#weights) versus performance

(miscl.) in the �tness function

1.5 Conclusion

Enzo combines two successful search techniques: gradient descent for an e�cient local weight

optimization and evolution for a global topology optimization. By that it takes full advantage

of the e�ciently computable gradient information without being trapped by local minima.

Through the knowledge transfer by inheriting the parental weights both learning is speeded up

by 1-2 orders of magnitude and the expected �tness of the o�spring is far above the average

for its topology. Moreover, Enzo impressively thins out the topology by the cooperation

of the discrete mutation operator and the continuous weight decay method. For this the

knowledge transfer is again crucial, because the evolved topologies are mostly too sparse to be

trained with random initial weights. Additionally, Enzo tries also to cut o� the connections to

eventually redundant input units: For the Nine Men's Morris problem Enzo found a network

with better performance but only 12% of the input units originally used. Therefore Enzo not

only supports the user in the network design but also determines the salient input components.

2 Who should use Enzo

2.1 History and purpose of Enzo

Enzo was designed to optimize the topology of neural networks as well as their performance.

So far this version supports the optimization of multilayer perceptrons. Elman networks,

TDNNs and RBF networks are currently under investigation.

This version of Enzo uses the Stuttgarter Neural Network Simulator (SNNSv4.1, kernel and

function library) for manipulating neural networks. All simulators can be supported as long

as they o�er a functional interface to manipulate networks.

Enzo should be a powerfool tool for everybody who uses neural networks and who is interested

in faster, smaller and better networks. It is not necessary to have any knowledge about genetic

algorithms, but it makes the system easier to comprehend. See (Goldberg, 1989, Reeves, 1993,

Schwefel, 1995) for an introduction.

The exible design of Enzo provides a tool that is usable for many tasks, when dealing with

neural networks. That is, instead of optimizing topologies, one can use it as well as a batch

program to train several networks just by changing the command �le in an appropriate way.

Adding your own modules allows you to tailor the program to your desire.

2.2 Where to get Enzo 9

2.2 Where to get Enzo

Enzo is available via anonymous ftp at the same site as the SNNS simulator. The host is

ftp.informatik.uni-stuttgart.de (129.69.211.2)

in the directory

/pub/SNNS.

Check there for further information (Readme.ENZO) and the �le ENZO.tar.Z or ENZO.tar.gz!

Before extracting the tar-�les note that there is no installation script by now. You should have

no problems if Enzo (resp. the tar-�les) are located on the same directory level as SNNSv4.1.

Uncompress the tar-�le and extract ENZO with

tar -xvf ENZO.tar

in the current directory.

The directory ENZO contains a make�le to compile the program. The subdirectory ENZO/src

contains all sources. The subdirectory ENZO/benchmarks contains some benchmarks. See also

section ??. The subdirectory ENZO/doc contains the documentation (with LaTEX sources).

2.3 Mailing list

There exists a mailing list for Enzo . If you want to be added to the list, send a message to

enzo-request@ira.uka.de.

Post your messages, questions, comments etc. to

enzo@ira.uka.de.

3 Design and Interface of Enzo

The design of Enzo provides a great exibility. The specialized knowledge of how to per-

form a certain evolution step is located in the modules (right lower corner of the Enzo block

in �gure 4. They are combinable like toy blocks and easily extensible. A population man-

ager takes care of handling the individuals as well as the pattern sets. The neural network

simulator is hidden behind a functional interface. Enzo also o�ers the possibility to use the

network description language CuPit . If one is familiar with CuPit and interested in using it

with Enzo please send an email to enzo-request@ira.uka.de. For more information about

CuPit see http://wwwipd.ira.uka.de/~hopp/cupit.html.

10 4 INSTALLING AND RUNNING ENZO

 Main loop

Selection

Moduls

 manager
 Population

end
 .
 .

while Evolution

Mutation

Optimize

begin

ENZO

21

e

l

b

a

T

Simulator
SNNS

e

3 n

c

Interpreter

RProp

CuPit

a

f

r

e
Kernel

t

n

I

Harddisk

U

I

F
Kernel

Network

Learning
Evolutionary
 Operators

Command file

Initialize

Network / Pattern
selection

Current

Patterns

Manipulate

Learning

Create
CuPit-Process

Load
 Network

 Change

SNNS - Format
Networks / Patterns

defined
User

functions

Figure 4: The �gure shows the main parts of Enzo and the interface to the neural network simulator,

e.g., the SNNS simulator. The Interface contains about 100 functions to perform several network

operations.

4 Installing and running Enzo

4.1 Installation

Unfortunately, for this �rst published version of Enzo no installation script exists. You don't

have to change any make�les as long as Enzo is located on the same directory level as the

SNNS simulator. (Expected name is SNNSv4.1). If this is not the case, use symbolic links or

adapt the make�les.

To install Enzo do the following:

1. Make sure Enzo is at the same directory level as SNNSv4.1

2. Type cd ENZO and than make. That should compile all libraries as well as the executable

enzo. The executable is located in the directory ENZO.

3. If you want to use the X-history window, type make xgraf. You may need to adapt the

library and include path in the make�le in ENZO/src/history/Xgraf.

4.2 Running Enzo

Enzo is run as a background (UNIX-) process. For small problems, a simple X-Window

visualization of the �tness function is usable. The networks can be analyzed using the graphical

user interface of SNNS. In near future, some tools will be provided with each standard history

module, to visualize the results.

4.3 The command �le 11

To run Enzo one simply types:

enzo cmd �le [log�le [seed]]

If no log �le is given, the output is written to stderr.

Post-evolution(); // Save reults, clean up, ..

Pre-evolution(); // Initialize, ...

Stop-evolution();

Crossover();

Selection();

Mutation();

Optimization();

Evaluation();

History();

Survival();

// Cross two individuals

// Mutate an individual

// Select individuals for reproduction

// Compute fitness of all offsprings

// Locally optimize (train) all offsprings

// Save protocol information

// Merge offsprings into population

// Check stopping criteriauntil

repeat

Figure 5: The �gure shows the main loop of Enzo . The evolutionary operators are called in

the shown sequence.

Enzo starts by reading the command �le. A sample command �le is given in chapter A.

Via the command �le modules can be activated through a key word and their parameters

can be set. The genetic operators are called sequentially as shown in �gure 5. Each operator

can consist of several modules (or be empty). The modules are combined by specifying their

key words in the command �le. They are called in the sequence of the appearance of the key

words. Note that one module can appear several times in this sequence. Figure 6 illustrates

the relationship between modules and operators.

4.3 The command �le

All possible key words are de�ned by the modules. For details see the description of the

modules in chapter 5. A dispatcher passes the key words and possible parameters to all

modules. Each module picks the information it is interested in and performs necessary actions.

The sequence of key words is only important in the way that the functionality of the resulting

operator depends on the order of the keywords, e.g., the optimization operator in �gure 6 has

another functionality if prune would be called before learnSNNS.

Still it is good style to keep certain entries in di�erent parts:

1. Files: You should specify the �le names of the networks and patterns in this part. Also the

pre�x for output �les should be given. This has the advantage that one sees immediately,

what task is optimized and which �les are involved.

12 5 MODULE DESCRIPTION

nullWeg

relearn

learnSNNS

prune

cleanup

nullWeg

learnSNNS

Optimization();

Module list:

nullWeg.c

cleanup.c

prune.c

nullWeg.c

relearn.c

learnSNNS.c

learnSNNS.c

module list

forms

operator

-- optimize --

Command file:

Interpreter

and creates

module list

reads key words

Figure 6: The �gure shows the relationship between modules and operators. The user can specify the

key words of the modules in the command �le, which will activate the modules,e.g., the interpreter

adds them to a module list which forms the evolutionary operator.

2. Modules: You should specify which modules form the evolutionary operators. Every mod-

ule de�nes a key word for its activation. The key words should be in the typical order,

e.g., pre-evolution before selection before crossover etc. This part says which modules

are to use.

3. Parameters: All parameters of all used modules should be set here. The order of key

words should be the same as for modules. If a parameter is set several times the last

appearance is used. This part decides how the evolution is done in detail.

A sample command �le is shown in chapter A.

5 Module description

The following sections describe the modules which are currently available for Enzo . Each

section corresponds to an operator, each subsection corresponds to a module. Firstly the key

word of the module is given, followed by the description of its parameters. Optional parameters

are given in brackets. All modules have sensible default values for their parameters. Some notes

on important parameters can be found in chapter 6. Each section is closed by a functional

description of the module and a sketch of the algorithm, if necessary.

5.1 Pre-evolution

5.1.1 Create an initial population

key word: initPop

5.1 Pre-evolution 13

gensize [x]

This parameter sets the maximal number of networks in the parent population.

Default: POP SIZE VALUE (30)

popsize [x]

This parameter sets the number of o�springs to create each generation.

Default: OFF SIZE VALUE (10)

network [x]

This string contains the �lename of the reference net. Each created net in the population

gets the same topology structure as the reference net.

Default: enzo.net

initFct [x]

This string contains the name of the SNNS init-function. The starting values of the

weights and biases will be set by this function.

Default: Randomize Weights

initParam [x]

These 5 parameters contains the parameters for the init-function. For the meaning of

these parameters please see the SNNS manual.

Default: -1.0 1.0 0.0 0.0 0.0

The module initPop loads the reference net (via SNNS) and copies this net to all members

of the parent population. After that all networks of the population are initialized with the

SNNS initial function.

Algorithm initPop:

Load the reference net;

Set the names of all units in the reference net;

forall (members of the starting population) do

Copy the reference net to the new net;

Initialize the net with initFct and initParam;

Set the initFct of the net to ENZO noinit;

5.1.2 Load a starting population

key word: loadPop

network [x]

This string contains the pre�x of the �lename, where the networks are stored in.

Default: enzo

14 5 MODULE DESCRIPTION

popsize [x]

This parameter x sets the number of networks for the starting population.

Default: POP SIZE VALUE (30)

The module loadPop loads networks for the starting population. The �lename for the ref-

erence net consists of the pre�x network and the extension ref.net. The �lename for the

other networks consists of the pre�x network and an extension containing a number, e.g.,

network_0000.net. It is important that all hidden units of the reference net and the other

networks of the starting population get the same unit name in SNNS. The purpose of this

module was to restart an evolution from a stopped process. The post�x of network names are

just in the way Enzo stored them.

5.1.3 Creating a population using the nepomuk library

key word: genpopNepo

popsize [x]

This parameter sets the maximal number of networks in the parent population.

Default: POP SIZE VALUE (30)

gensize [x]

This parameter sets the number of o�springs to create each generation.

Default: OFF SIZE VALUE (10)

The module creates a population of networks using the nepomuk library. Three parts of

the population are distinguished: the reference net, the parent population and the o�spring

population. Note that only memory for popsize + gensize + 1 networks is allocated, but no

networks are created at that time.

5.1.4 Load standard SNNS pattern sets

key word: loadSNNSPat

learnpattern [x]

This string contains the �lename for the learning patterns.

Default: -

testpattern [x]

This string contains the �lename for the test patterns. The test patterns are used to

determine the �tness of the networks for the genetic algorithm.

Default: -

crosspattern [x]

This string contains the �lename for the validation patterns. The validation patterns

are used to determine the e�ciency of networks. These patterns should not be used in

the learning phase or to determine the �tness of the networks.

Default: -

5.1 Pre-evolution 15

The module loadSNNSPat loads the three pattern sets with the original SNNS-function. The

�lename must contain the extension .pat for the SNNS pattern �les. The number of pattern

sets to be managed is restricted to 3. To use more sets you have to increase the maximum

number de�ned in the population manager.

5.1.5 Learning during the pre-evolution

key word: initTrain

initLearnfct [x]

This string contains the name of the SNNS learning function.

Default: Rprop

initLearnparam [x]

These 5 parameters contains the values of the parameters for the learning function. For

further informations see the SNNS manual. Default: 0.0 0.0 0.0 0.0 0.0

initMaxepochs [x]

This parameter x contains the maximum number of periods for the learning algorithm.

After this maximum the module initTrain will automatically stop the learning function.

Default: 50

initMaxtss [x]

This parameter indicates the maximal tolerable learning error. The error is normalized

by the number of learning patterns and the number of output units. The module init-

Train will terminate the learning function if the learning error is less than this threshold.

Default: 0.5

initShuffle [x]

This switch indicates whether the sequence of the learning patterns is changed after

each learning period or not. If the switch is turned on, then the module initTrain will

use the SNNS function shu�e

Default: yes

The module initTrain is an alternative version to the standard learning module learnSNNS.

It is possible to use di�erent learning functions and parameters in the pre-evolution phase

than in the optimization phase. In the sense of lamarckism, where o�springs get the strength

of their weights directly from their parents, it is useful to have this opportunity. This leads to

less learning epochs for o�springs in comparison to networks of the starting population, i.e.,

randomly initialized networks.

Algorithm initTrain:

for (each net) do

Set the actual SNNS-learning function initLearnFct;

while (Epochs < initMaxEpochs) and (tss > initMaxTss) do

Learn one epoch with initLearnParam;

16 5 MODULE DESCRIPTION

5.1.6 Random selection of input units

key word: inputInit

minNoInput [x]

This parameter sets the lower bound of the number of active input units.

Default: 1

maxNoInput [x]

This parameter sets the upper bound of the number of active input units.

Default: Number of all input units

The module inputInit randomly selects between minNoInput and maxNoInput input units for

the net of the starting generation. The other input units deactivated in the network structure

by deleting all incoming and outgoing weights of this units. The purpose of this module is to

increase the diversity of the starting population by creating di�erent input layer topologies.

5.1.7 Look for the optimal number of hidden units.

key word: optInitPop

maxtss [x]

This parameter sets the value for the stop criterion of the learning module. In this

module it is used to decide if a net can learn the patterns or not.

Default: 0.5

learnModul [x]

This string sets the name of the module, which contains the learning function during

the optimization phase.

Default: learnSNNS

The module optInitPop tries to �nd the minimum number of hidden units, which are required

to learn the given problem properly. This number of hidden units is computed with a binary

search. When this minimum topology is found, the rest of the networks will be randomly

created with a number of hidden units between the found number and the maximum number

of hidden units. The purpose of this module is to reduce the network size of the parent

networks to a sensible size to speed up the evolution process.

5.1 Pre-evolution 17

Algorithm optInitPop:

Load the reference net;

Name the hidden units in the reference net;

lowerBound = 0;

upperBound = # hidden units;

learned= 0;

repeat

learned++;

hiddenUnits = (lowerBound + upperBound) div 2;

copy the reference net;

delete (#hidden units in reference net - hiddenUnits) from the o�spring;

train the o�spring with learnModul;

if (o�spring is trained well) then

upperBound = hiddenUnits;

else

lowerBound = hiddenUnits + 1;

until (upperBound � lowerBound) or (learned = popsize)

for (i = learned + 1 to popsize) do

copy the reference net;

hiddenUnits = Rand(lowerBound, #hidden units);

delete (#hidden units - hiddenUnits) from the o�spring;

5.1.8 Create a population of networks from one special network

key word: startPop

popsize [x]

This parameter sets the number of elements in the population.

Default: POP SIZE VALUE (30)

network [x]

This string contains the �lename of the reference network.

Default:

startnet [x]

This string contains the �lename of the master network, which structure is copied to all

the other networks.

Default:

initFct [x]

This string contains the name of the SNNS init-function. This function is used to ini-

tialized all created networks.

Default: ENZO noinit

18 5 MODULE DESCRIPTION

initParam [x]

This �ve parameters contains the values for the function parameters of the SNNS init-

function initFct. For the meaning of the parameters please see the SNNS manual.

Default: -1.0 1.0 1.0 0.0 0.0

The module startPop loads the reference network and a special master network. The topology

of the master network is copied to all the other networks in the start-population. Afterwards

all weights and biases of the networks will be initialized with the initFct. The idea is to take a

good network to initialize the genetic search. Another possibility is to overcome the limitation

of the maximal topology by using a much bigger reference network than master network, with

the master network maybe untrained. If the master network is already locally optimized, one

should use the initialization function ENZO noinit.

Algorithm startPop:

Load the reference and the master net;

forall (Elements in the start-population) do

Copy the master network to the network;

Initialize the networks randomly with initFct and initParam;

Set initFct to ENZO noinit;

5.1.9 Random selection of weights

key word: weightInit

weightProb [x]

This parameter sets the probability pexists. Each weight will be deleted probability

1� pexists. Default: 1.0

The module weightInit deletes weights from a net of the start-population randomly. This

could by necessary to increase the diversity of the population or to reduce the free dimensions

of the network.

Algorithm weightInit:

forall (Weights in the net) do

if (Rand(0,1) > pexists) then

delete the weight in the net;

5.2 Stopping condition 19

5.1.10 Delete some rules from a neuro fuzzy net

key word: NFdelRules

delrules [x]

The parameter x determines how many rules are deleted.

Default: 0

The module NFdelRules reduces the size of the initial networks by deleting some rules. Delet-

ing rules means that all membership functions of that rule, the rule itself and the correspond-

ing singleton units are removed. The reference net is the largest possible network so that no

more rules can be added by the mutation operators. When NFdelRules is used the size of

the reference net can be chosen larger than necessary. By deleting some rules the mutation

operators can now add and delete rules.

5.2 Stopping condition

5.2.1 Normal stopping

key word: stopIt

maxGenerations [cnt]

Stops the evolution after cnt generations; Is cnt not speci�ed, after the �rst generation.

5.2.2 Stopping by error

key word: stopErr

no parameter

Stops the evolution, if parents or o�springs are not valid networks. This usually happens, if

the initialization is missing.

5.3 Selection

5.3.1 Uniform selection

key word: unifSel

NoOfOffsprings k

Sets the number of new o�spring each generation to k .

selProb psel

Sets the probability of selection to psel.

The selection probability is prob.

20 5 MODULE DESCRIPTION

5.3.2 Selection of parents preferring the better networks

key word: preferSel

gensize [gen]

This parameter sets the number of networks in the o�spring population.

Default: 10

preferfactor [x]

This parameter x sets the bias for selecting �tter networks. A value x � 1 means that

the better networks will be preferred, a value 0 � x � 1 means that the poor networks.

A value x = 2 means that the �rst quarter of the population is as often selected as the

rest of the population. A value x = 3 means that the �rst 12.5% of the population is as

often selected as the rest of the population.

Default: 3.0

This module selects the given number of parents for the reproduction process (mutation and

crossover). Better networks are selected with a higher probability.

Algorithm preferSel:

n = number of networks in the parent population;

p = preferfactor;

parentNo = (rand(0; 1)p) � n

Select the network with number parentNo;

5.4 Mutation

5.4.1 A simple weight mutation

key word: simpleMut

probadd [padd]

This parameter x indicates the probability padd for inserting a non existing weight.

Default: 0.0

probdel [pdel]

This parameter x indicates the probability pdel for deleting an existing weight.

Default: 0.0

initRange [f]

The parameter x determines the interval [-range, range] where inserted weights are

randomly selected from.

Default: 0.5;

5.4 Mutation 21

The module simpleMut executes a simple kind of weight mutation. Each existing weights of

the o�spring will be deleted with the probability pdel, each weight, that exists in the reference

net and not in the o�spring will be inserted with the probability padd. The inserted weight

will be created when both units, the input and the output unit exists. Note that neglecting

the selection there exists a equilibrium state of adding and deleting weights, i.e., the number

of weights n in the network, that depends on the values of padd and pdel: n = padd
padd�pdel

.

Algorithm simpleMut:

for all (Weights of the reference net) do

Search the appropriate weight in the o�spring;

if (the weight exists in the o�spring) then

if (RAND(0,1) < pdel) then

delete the weight in the o�spring;

else if (the weight doesn't exist in the o�spring) then

if (both units, start and end-unit exist in the o�spring) then

if (RAND(0,1) < padd) then

insert weight in the o�spring;

5.4.2 An other weight mutation

key word: mutLinks

probadd [padd]

This parameter x indicates the probability padd for inserting a non existing weight.

Default: 0.0

probdelStart [pdelstart]

This parameter x indicates the starting probability pdelstart for deleting an existing

weight. All probabilities between the pdelstart (�rst generation) and pdel will be linear

interpolated.

Default: 0.0

probdel [pdel]

This parameter x indicates the height of the gaussian distribution for deleting an existing

weight (See the algorithm mutLinks).

Default: 0.0

sigmadel [x]

This parameter x indicates the width of the gaussian distribution for deleting an existing

weight (See the algorithm mutLinks).

Default: 1.0

probdelEndGen [i]

This parameter i indicates the generation in which the linear interpolation of the prob-

ability pdel for deleting an existing weight ends.

Default: 0

22 5 MODULE DESCRIPTION

initRange [f]

The parameter x determines the interval [-range, range] where inserted weights are

randomly selected from.

Default: 0.5;

The module mutLinks executes a mixture of a simple weight mutation and pruning, called

soft pruning. Each weight that exists in the reference net and not in the o�spring net will

be inserted with the probability padd. The inserted weight will be created when both units,

the input and the output unit exists. Each existing weight will be deleted by an gaussian

distribution on the strength of the weight. This means that the probability to be deleted is

for a small weight is greater than a bigger one.

Algorithm mutLinks:

for all Weights of the reference net do

Search the appropriate weight in the o�spring

if (the weight exists in the o�spring) then

if (RAND(0,1) < p
t
dele

�weight
2

sigmadel) then

delete the weight in the o�spring

else if (the weight doesn't exist in the o�spring) then

if (start and end-unit exist in the o�spring) then

if (RAND(0,1) < padd) then

insert weight in the o�spring

5.4.3 Mutation of hidden neurons

key word: mutUnits

probMutUnits [x]

The parameter x indicates the probability pmut a mutation takes place.

Default: 0.5

probMutUnitsSplit [x]

The parameter x describes the relationship between inserting and deleting hidden units.

Default: 0.5

PWU [x]

This switch activates the Prefer Weak Units strategy in the case of deleting hidden

units.

Default: yes

bypass [x]

This switch turns on the bypass function while deleting a hidden unit.

Default: yes

5.4 Mutation 23

initRange [x]

This parameter x describes the interval [-initRange,initRange] where inserted weights

are randomly selected from. Default: 0.5

The module mutUnits executes a mutation of the hidden units. The maximum number of

deleted or inserted hidden units is limited by one. All other mutation and optimization mod-

ules can only delete units, they can never insert weights to a deleted hidden unit. In this case

of deleting an activated hidden unit, all weights will be deleted. In the case of inserting a

hidden unit, all possible weights will be inserted. The number of weights and hidden units

which can be inserted is limited by the topological structure of the reference net. The modules

uses bypass-function and the Prefer Weak Unit strategy. The bypass-function is illustrated in

�gure 2. The idea is to linearly approximate a non-linear relationship, i.e., approximate the

function computed by a hidden unit by a linear function. This is done by using shortcut

(direct) connections. The Prefer Weak Unit strategy is to check the connectivity of a unit,

i.e., count its incoming and outgoing weights, and prefer those for deleting which are weaker

connected. This is called soft unit pruning.

Algorithm mutUnits:

if (RAND(0,1) > pmut) then

if (RAND(0,1) > psplit) then

search a unit in the reference net which does not exist in o�spring;

insert this unit in the o�spring;

insert all possible weights of the unit;

else

if (PWU set) then

select the weakest hidden unit of the o�spring;

else

select accidental a hidden unit of the o�spring;

if (bypass activated) then

delete the selected unit with the bypass function;

else

delete the unit and all its weights;

5.4.4 Mutation of the input units

key word: mutInputs

probMutInputs [x]

The parameter x indicates the probability pmut that a mutation takes place.

Default: 0.5

probMutInputsSplit [x]

The parameter x indicates the relationship psplit between inserting and deleting of input

24 5 MODULE DESCRIPTION

units.

Default: 0.5

initRange [x]

The parameter x determines the interval [-range, range] where inserted weights are

randomly selected from.

Default: 0.5

The module mutInputs executes a mutation only of the input units. The maximum number of

deleted or inserted input units is limited by one. All other mutation and optimization modules

can only delete units, they can never insert weights to a dead input unit.

The internal structure of SNNS does not allow to delete the input units like the hidden units,

so the input units are just deactivated. In this case instead of deleting an activated input

unit, all weights will be deleted. They are marked with the unit name xxx. If you analyze

the network with the graphical user interface of SNNS, select in the display setup show name

to easily identify removed input units. In the case of inserting a deactivated input unit, all

possible weights will be inserted.

Algorithm mutInputs:

if (RAND(0,1) > pmut) then

if (RAND(0,1) > psplit) then

insert all possible weights of the deactivated input unit

else

delete all weights of the activated input unit

5.4.5 Mutation of rules in a neuro fuzzy network

key word: NFmutRules

probMergeSim [pMs]

The parameter pMs indicates the probability that the operator MergeSim is executed.

Default: 0.0

probMergeOvl [pMo]

The parameter pMo indicates the probability that the operator MergeOvl is executed.

Default: 0.0

probDelWeak [pDw]

The parameter pDw indicates the probability that the operator DelWeak is executed.

Default: 0.0

probSplitErr [pSe]

The parameter pSe indicates the probability that the operator SplitErr is executed.

Default: 0.0

5.4 Mutation 25

probAddRand [pAr]

The parameter pAr indicates the probability that the operator AddRand is executed.

Default: 0.0

SimFact [fs]

The parameter fs indicates how much two similar rules are preferred. fs = 1:0 means

no preference. Default: 1.0

OvlFact [fo]

The parameter fo indicates how much two overlapping rules are preferred. fs = 1:0

means no preference. Default: 1.0

WkFact [fw]

The parameter fw indicates how much rules with high relative activation are preferred.

fw = 1:0 means no preference. For deleting rules fw should be negative preferring weak

rules. Default: 1.0

ErrFact [fe]

The parameter fe indicates how much rules which contribute to the MSE are preferred.

fe = 1:0 means no preference. Default: 1.0

The module NFmutRules mutates rules of a neuro fuzzy network. Only whole rules together

with their corresponding membership functions and singletons are added or deleted. There

are four operators :

� Add a new rule

� Delete an existing rule

� Merge two rules to one rule

� Split a rule in two new rules

The add operator inserts a new rule. The center of the new rule is set to the center of a

randomly chosen training pattern. The width is set to the distance between the center of the

rule and the center of another randomly chosen training pattern.

The delete operator deletes weak rules with higher probability. The weakness of a rule is

calculated by summing up all relative activations for all patterns. The parameter fw should

be negative to prefer weak rules.

The merge operator merges two similar or overlapping rules. The similarity of two rules

depends on the distance of their centers and their widths. The singleton weights of both rules

must have same sign. The overlap of two rules is calculated by the product of their relative

activations summed up over all patterns.

The center of the new rule lies between the centers of the old rules. The width is chosen

randomly. The minimum value is the distance of the centers, the maximum value is the

distance plus the widths of the old rules (�g. 7). The rule weight and singleton weight are set

to the mean of the weights of the old rules.

26 5 MODULE DESCRIPTION

−4 −3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

old rules

new rule

Figure 7: The merge operator. Two rules are

merged to one new rule

The weights are calculated seperately for all dimensions d of the n-dimensional input space.

For old rules i; j and new (merged) rule k following equations hold :

�
d
k =

�
d
i + �

d
j

2
(center)

�
d
k = U(�dmin; �

d
max) (width)

�
d
min =

maxfj �di � �
d
j j; �

d
i ; �

d
j g

2
; �

d
max =

j �di � �
d
j j +�

d
i + �

d
j

2

�k =
�i + �j

2
(rule weight)

�k =
�i + �j

2
(singleton weight)

The split operator splits a rule which contributes much to the network error. The centers of

the new rule are shifted in random direction. The widths are set to the half of the widths of

the old rule (�g. 8).

For new (splitted) rules i; j and old rule k following equations hold :

'
d = U(�1; 1)

�
d
i = �

d
k + '

d � �dk ; �
d
j = �

d
k � '

d � �dk (centers)

�
d
i = �

d
j =

�
d
k

2
(widths)

�i=j = U(
�k

2
; �k) (rule weights)

�i=j = U(��k; �k) (singleton weights)

5.4 Mutation 27

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

new rule

new rule

old rule

Figure 8: The split operator. A rule is splitted

to two new rules

5.4.6 Mutation of weights in a neuro fuzzy network

key word: NFmutWeights

mutCenterMean [c�]

Mean of the lognormal distribution for the centers. Default: 1.0

mutWidthMean [w�]

Mean of the lognormal distribution for the widths. Default: 1.0

mutRuleMean [r�]

Mean of the lognormal distribution for the rule weights. Default: 1.0

mutSngMean [s�]

Mean of the lognormal distribution for the singleton weights. Default: 1.0

mutCenterDev [c�]

Deviation of the lognormal distribution for the centers. Default: 0.0

mutWidthDev [w�]

Deviation of the lognormal distribution for the widths. Default: 0.0

mutRuleDev [r�]

Deviation of the lognormal distribution for the rule weights. Default: 0.0

mutSngDev [s�]

Deviation of the lognormal distribution for the singleton weights. Default: 0.0

The module NFmutWeightsmutates all weights by multiplying the weights with a lognormally

distributed random value. The mean and deviation can be chosen for the centers, widths, rule

weights and singleton weights.

28 5 MODULE DESCRIPTION

5.5 Crossover

5.5.1 Crossover of the connections between input- and output layer

key word: linCross

probCross [x]

Probability of inserting a connection, that is contained in only one parent. Default: 0.5

This module does a linear crossover for all weights, which connect directly the input layer to

the output layer, e.g., in nets without hidden layers or with shortcut connections. Only those

connections are manipulated in the o�spring net, no other units or weights are involved. If a

network does not contain any of these connections, it remains unchanged.

Algorithm linCross:

delete all connections from all o�springs

forall possible connections do

if (connection in both parents) then

insert connection in o�spring;

set weight to the mean value of the parents' weights

else if (connection only in one parent)then

if (RAND(0,1) < pcross) then

insert connection in o�spring;

set weight to the value of the parent's weight;

5.5.2 Implant a feature from the �ttest net in an o�spring

key word: implant

implantProb [x]

Probability of selecting a hidden unit of the �rst hidden layer from the best parent

network and implanting it in one o�spring network.

Default: 0.2

This module selects a hidden unit from the �rst hidden layer in the �ttest parent network and

implants it in an o�spring network. The hidden units are marked with their name to prevent

implantation of a feature twice.

5.6 Optimization 29

Algorithm implant:

repeat

get hidden unit of the �rst layer in the �ttest network;

if (hidden unit does not exist in o�spring net) then

implant (add) unit to o�spring net;

forall (connections in parent network) do

if (source unit does exist in o�spring net) then

insert connection with the same weight in o�spring net;

until (a hidden unit was implanted or all hidden units failed)

5.6 Optimization

5.6.1 Learning stopped by periods or learning error

key word: learnSNNS

learnfct [x]

This parameter x contains the name of the SNNS-learning function.

Default: Rprop

learnparam [x]

This array of parameters indicates the parameter for the SNNS learning function. The

meaning of the parameters can di�er from learning function to learning function. For

details please see the SNNS manual.

Default: 0.0 0.0 0.0 5.0 0.0

maxepochs [x]

This parameter x contains the maximum number of periods for the learning algorithm.

After this maximum the module learnSNNS will automatically stop the learning func-

tion.

Default: 50

maxtss [x]

This parameter indicates the maximal tolerable learning error of the network. The error

is normalized by the number of learning patterns and the number of output units. The

module learnSNNS will terminate the learning function if the learning error is less then

this threshold.

Default: 0.5

shuffle [x]

This switch indicates whether the sequence of the learning patterns is changed after

each learning period or not. If the switch is turned on, then the module learnSNNS will

use the SNNS-function shu�e

Default: yes

30 5 MODULE DESCRIPTION

The module learnSNNS is the standard-learn module during the optimization. The module

stops the learning of an o�spring network if the learning error is below an upper bound or it

reaches the maximum number of learning periods.

Algorithm learnSNNS:

Set the SNNS learn function learnFct;

for all (networks of the o�spring population) do

while (Epochs < maxEpochs) and (tss > maxTss) do

Train one period with learnParam;

5.6.2 Learning stopped by periods or cross validation error

key word: learnCV

learnfct [x]

This parameter x contains the name of the SNNS-learning function.

Default: Rprop

learnparam [x]

This array of parameters indicates the parameter for the SNNS learning function. The

meaning of the parameters can di�er from learning function to learning function. For

details please see the SNNS manual.

Default: 0.0 0.0 0.0 5.0 0.0

maxepochs [x]

This parameter x contains the maximum number of periods for the learning algorithm.

After this maximum the module leranSNNS will automatically stop the learning func-

tion.

Default: 50

CVepochs [x]

This parameter x sets after how often the error on the cross validation set for cross

validation is computed.

Default: 2

shuffle [x]

This switch indicates whether the sequence of the learning patterns is changed after

each learning period or not. If the switch is turned on, then the module learnCV will

use the SNNS-function shu�e

Default: yes

The module learnCV uses the error an a cross validation pattern set to stop learning. If it

increases again learning is stopped. The module stops the learning of an o�spring network if

5.6 Optimization 31

the error on a cross vailidation set starts increasing again or it reaches the maximum number

of learning periods. This is done by computing the error each CVepochs. If the current error

is larger than the average of the last four values, learning is stopped.

Algorithm learnCV:

Set the SNNS learn function learnFct;

for all (networks of the o�spring population) do

while (Epochs < maxEpochs) and (tss(t) <
Pk=t�1

k=t�4 tss(k)) do

Train one period with learnParam;

5.6.3 Delete all weights below a threshold

key word: prune

threshold [t]

The parameter t indicates the threshold, underneath all weights of the net will be

deleted.

Default: 0.0

thresholdStart [f]

The parameter x indicates the start-threshold for the pruning module.

Default: 0.0

pruneEndGen [i]

The parameter i indicates th number of the generation until the pruning module will

take the origin threshold .

Default: 0

All weights of the net with an abolute strength under the threshold will be deleted.

threshold

EndGen Generation

prune
threshold

thresholdStart

32 5 MODULE DESCRIPTION

5.6.4 Adaptive pruning

key word: adapPrune

threshold [x]

This value gives the threshold used to initialize the parents.

Default: 0.0

deltaThreshold [x]

This value gives the maximal factor the threshold of the o�springs is allowed to di�er

from the parents.

Default: 0.2

aveThreshold [x]

For every network the mean value of the absolute value of the weights is computed and

the threshold is individually set to this value times aveThreshold .

Default: 0.0

The module adapPrune is an adaptive variation of standard pruning. Weights which are

smaller than the threshold are deleted. The threshold is set individually for every network,

depending on the mean value of its weights. If the factor aveThreshold is not set the value

threshold is used. The distribution of possible changes is realized with a Gaussian distribution

g(x) and a maximal factor:

(�threshold = g(x)� deltaThreshold).

5.6.5 Relearning

key word: relearn

relearnfactor [f]

The parameter x indicates the factor with which all weights and biases will be multiplied

with.

Default: 1.0 (no change of the weights and biases takes place.)

In the mind of lamarckism not only the topology of the parents will be transmitted to the

o�spring, but also the strength of connections inside the structure. In the case of neural

networks this will lead to a local minimum in the learning function. To escape from this local

minimum it is necessary to change the weights a little bit. The module relearn multiplies all

weights and biases with a given factor.

5.6.6 Adding random distributed values

key word: jogWeights

5.7 Evaluation 33

jogLimit [f]

The range of values added is given by [�Paramf; Paramf]. Default: 0.01

In the mind of lamarckism not only the topology of the parents will be transmitted to the

o�spring, but also the strength of connections inside the structure. To get out of the centre

of a local minima the module jogWeights adds random uniform distributed values to the

connection weights. This is an alternative to the relearn-module, that multiplies all weights

by a constant factor.

5.6.7 Cleanup the structure of a net

key word: cleanup

no parameters

The module cleanup deletes all units and weights which have no direct or indirect connection

to the input or output layer of the net.

5.6.8 Delete o�springs without links

key word: nullWeg

no parameter

The module nullWeg deletes all o�springs which contain no connections. This could otherwise

eventually lead to misbehavior in other modules.

5.7 Evaluation

5.7.1 Evaluation of the topology

key word: topologyRating

weightRating [f]

The number of connections in the network is multiplied by this value and divided

through the maximal number of connections (in the reference network). The result

is added to the �tness term.

Default: 0.0

unitRating [u]

The number of hidden units in the network is multiplied by this value and divided

through the maximal number of hidden units (in the reference network). The result is

added to the �tness term.

Default: 0.0

34 5 MODULE DESCRIPTION

inputRating [k]

The number of input units in the network is multiplied by this value and divided through

the maximal number of input units (in the reference network). The result is added to

the �tness term.

Default: 0.0

The module topologyRating evaluates the topology of all o�spring networks. Criteria are the

number of connections, the number of hidden units and the number of input units. These

numbers are multiplied by a scaling factor and divided through the maximal values of the

reference network. The result contributes to the �tness.

5.7.2 Evaluation of the learning process

key word: learnRating

noLearnRating [f]

This value is added to the �tness term if the network couldn't learn the patterns prop-

erly, e.g. its mean error was higher than speci�ed by maxtss

Default: 200.0

epochRating [f]

The number of learning epochs needed is multiplied by this value and added to the

�tness term.

Default: 0.0

tssRating [f]

The mean error is multiplied by this value and added to the �tness term.

Default: 0.0

maxtss [f]

If the mean error is lower than this value, learning is stopped. It is necessary to decide

if learning was successful or not.

Default: 0.5

The module learnRating evaluates the learning properties of all o�spring networks. It is pos-

sible to evaluate the mean error, the number of training epochs until the mean error is lower

than a given threshold and additionally punish networks which couldn't learn the patterns

with a speci�ed precision.

5.7.3 Evaluation using the 40 - 20 - 40 method

key word: classes

crossPattern [name]

Name of the �le which contains the set of cross validation patterns.

Default: -

5.7 Evaluation 35

hitRating [f]

Value that is added to the �tness term, in case the network classi�es a pattern correctly.

Default: 0.0

missRating [f]

Value that is added to the �tness term, in case the network classi�es a pattern wrong.

Default: 10.0

noneRating [f]

Value that is added to the �tness term, in case the network doesn't classi�es a pattern.

Default: 10.0

highDesc [f]

Maximal output value of the output neuron.

Default: 1.0

lowDesc [f]

Minimal output value of the output neuron.

Default: -1.0

decisionThreshold [f]

Distance between the output of min-activation and the output of max-activation.

Default: 0.2

The module is useful for two state classi�cation networks with one output neuron, i.e., one

value reecting a positive classi�cation (usually 1), and the other reecting the negative

classi�cation (usually 0). The values are set by highDesc and lowDesc. The distance decision-

Threshold is taken around the average. If the output is within the decisionTreshold area it is

taken as not classi�ed.

5.7.4 Evaluation using the highest output

key word: bestGuessHigh

crossPattern [name]

Name of the �le which contains the set of cross validation patterns.

Default: -

hitRating [f]

Value that is added to the �tness term, in case the network classi�es a pattern correctly.

Default: 0.0

missRating [f]

Value that is added to the �tness term, in case the network classi�es a pattern wrong.

Default: 10.0

noneRating [f]

Value that is added to the �tness term, in case the network doesn't classify a pattern.

Default: 10.0

36 5 MODULE DESCRIPTION

hitThreshold [f]

The value gives the threshold that needs to be reached, before classifying takes place

Default: 0.3

hitDistance [f]

The value gives the distance between the output of two neurons, before a classi�cation

counts as valid. Default: 0.2

The module bestGuessHigh tests the generalization performance of a network and increases

the �tness. It is useful for a Winner-takes-all output (1 out of n) properties. The neuron with

the highest activity is selected as winner. If its activity distance to the next highest activated

neuron is smaller than hitDistance the pattern is treated as not classi�ed.

5.7.5 Evaluation using the lowest output

key word: bestGuessLow

crossPattern [name]

Name of the �le which contains the set of cross validation patterns.

Default: -

hitRating [f]

Value that is added to the �tness term, in case the network classi�es a pattern correctly.

Default: 0.0

missRating [f]

Value that is added to the �tness term, in case the network classi�es a pattern wrong.

Default: 10.0

noneRating [f]

Value that is added to the �tness term, in case the network doesn't classi�es a pattern.

Default: 10.0

hitThreshold [f]

The Value gives the threshold that needs to be reached, before classifying takes place

Default: 0.3

hitDistance [f]

The Value gives the distance between the output of two neurons, before a classi�cation

counts as valid.

Default: 0.2

The module bestGuessLow tests the generalization performance of a network and increases the

�tness. The neuron is selected which has the lowest activity, e.g., a Looser-takes-all selection.

If its activity distance to the next lowest activated neuron is smaller than hitDistance the

pattern is treated as not classi�ed.

5.7 Evaluation 37

5.7.6 Evaluation through a cross validation set

key word: tssEval

crossPattern [name]

Name of the �le which contains the set of cross validation patterns.

Default: -

crossTssRating [x]

factor for multiplying the mean error per pattern on the cross validation set. Default:

0.0

crossHamRating [x]

Value to add for each wrong classi�ed pattern. Default: 0.0

crossHamThresh [x]

possible distance, that is allowed for the output from the target. A pattern is wrong

classi�ed, if at least the output of one output neuron di�ers from its target by more

than [x]. Default: 0.0

This module computes a simple �tness term on a cross validation set. The mean error per

pattern as well as the classi�cation performance can be evaluated.

5.7.7 Evaluation of the topology of a neuro fuzzy net

key word: NFtopoEval

ovlRating [o]

The measure for overlapping rules ovl is determined by the product of the relative

activations r for all i; j; i 6= j summed up over all patterns p.

ovl =
X

p

X

i

X

j;j 6=i

r
p
i � r

p
j =
X

p

X

i

r
p
i � (1� r

p
i)

The result is multiplied by parameter o and added to the �tness term.

Default: 0.0

localRating [l]

The measure for the locality of the rules loc is determined by the relative activation r

of the rule multiplied by the distance between the input patttern � and the center � of

the rule summed up over all patterns p.

loc =
X

p

X

i

jj(�i � �p)jj2 � r
p
i

The result is multiplied by parameter l and added to the �tness term.

Default: 0.0

The module NFtopoEval contains evaluation functions specially for RBF-networks. It evalu-

ates the topology of all o�spring networks. Criteria are the overlap and the locality of the

rules. The result contributes to the �tness. The overlap determines how many rules are ac-

tive for a given pattern. The locality determines the area where a rule is active. For easily

interpretable networks both the overlap and the locality should be small.

38 5 MODULE DESCRIPTION

5.8 History

5.8.1 A simple version of saving all important informations

key word: histSimple

historyFile �lename

This string contains the pre�x of the �lename where all informations are stored. The

extension of the �lename is .simple .

A simple record that writes down all needed informations about the network, e.g. learning,

topology and �tness values. Each row contains the informations about one network.

5.8.2 Saving all informations about �tness of the networks

key word: histFitness

historyFile �lename

This string contains the pre�x of the �lename where all informations are stored. The

extension of the �lename is .�t for the net informations and .pop�t for the population

informations.

The modul histFitness writes all �tness informations of a net in a special �le (extension .�t).

Each line of the �le accords to one net.

The �le with the .pop�t extension contains informations about the �tness of whole population.

Each line describes the several �tness values (best �tness of all members, worst �tness of all

members and the average �tness) of the population at each generation. The population �le is

ready for gnuplot and other programs.

The �tness values are not computed in this modul, they are computed during the evalution

functions and stored in special slots of the data structure.

5.8.3 Saving all topology informations

key word: histWeights

historyFile �lename

This string contains the pre�x of the �lename where all informations are stored. The

extension of the �lename is .weight.

A simple record that writes down all needed informations about the topology of the network,

number of weights, number of hidden units and number of active input units. Each row

contains the informations about one network.

5.8 History 39

5.8.4 Saving all informations about the networks on the cross validation patterns

key word: histCross

historyFile �lename

This string contains the pre�x of the �lename where all informations are stored. The

extension of the �lename is .cross for the network informations and .popcross for the

population informations.

The modul histCross writes all informations about the network in a special �le (extension

.cross) Each line of the �le accords to one network. It contains information about the number

of hits (the network classi�ed the pattern correct), miss (the network cassi�ed the pattern

wrong) and nones (the network did not classify the pattern in an unique way). It also contains

the quotient hits and misses.

The �le with the .popcross extension contains informations about the whole population. Each

line describes the several test values (best quotient of all members, worst quotient of all

members and the average quotient) of the population at each generation. The population �le

is ready for gnuplot and other programs.

The values are not computed in this modul, they are computed in the evalution functions and

stored in special slots of the data structure.

This module is only useful in conjunction with evaluation modules using classi�cation perfor-

mance, e.g. bestGuessHigh or classes.

5.8.5 Family tree

key word: ancestry

historyFile [hist�le]

Pre�x for the output �le

Default: enzo.hst

ancestryPS [x]

If the ag is set a postscript �gure of the family tree is generated.

Default: NO

This module writes the histIDs of each generation. It is possible to see when each network is

born and how long it survives in the population. O�springs which never enter the population

are not shown. It's possible to generate a postscrip �gure from the family tree by setting the

ag to YES.

5.8.6 Simple X-Window history

key word: Xhist

40 5 MODULE DESCRIPTION

Xgeometry [x] [y] [width] [height]

Speci�es the size and position of the window on the terminal. The top left corner is

given by [(x,y)]. the width and height by [width] and [height].

Default: 10 10 600 300

Xcoord [xll] [yll] [xur] [yur]

De�nes the coordinate system for the graphical representation of the �tness values.

The left lower corner is speci�ed by [(xll, yll)] and the right upper corner by opt-

Param(xur, yur).

Default: 0.0 0.0 30 1000.0

A X-Window with a coordinate system is shown. The best, average and worst �tness val-

ues are plotted vs. generation number. The size of the window and the coordinates are

adjustable by the user. This module uses the xgraf program, located in the directory

ENZO/src/history/Xgraf. To compile xgraf type make xgraf in the ENZO directory.

5.8.7 Used input units

key word: histInputs

historyFile [x]

This string contains the pre�x of the �lename of the output �le.

Default: enzo

The modul histInputs writes for each input unit of a net whether it is active or not. The �le

for the output is named by the pre�x historyFile and the extension .inputs .

The information for each network consist of one row, where all the informations are written

down. A D means that this input unit is absent in the net, a X means that the input unit is

active.

5.9 Survival

5.9.1 Survival of the �ttest

key word: �ttestSurvive

NoOfOffsprings k

This parameter gives the number of o�springs which are to be inserted in the population.

o�springs k .

This module inserts better o�springs into the population and removes worse parents. The

individuals are sorted by their �tness, the lower the better.

5.10 Post-evolution 41

5.10 Post-evolution

5.10.1 Storing networks after evolution

key word: saveAll

netDestName �lename

Sets the pre�x of the �lename. Networks are written to �les with the pre�x followed by

a number for each network and the su�x .net, e.g. �lename_1.net .

saveNetsCnt [cnt]

Number of networks, which are to be stored.

Default: 99

Saves the given number of networks at the end of the evolution. Usually this are parent

networks and the reference net. The networks are numbered with increasing �tness, e.g. the

best network is �lename_0.net

5.11 Sample module

5.11.1 My module title

key word: mymodule

initialize [x]

Description of this parameter.

Default: -

exit [x]

Description of this parameter.

Default: -

myParam [x]

Description of this parameters.

Default: -

Here should follow a description of the functionality of the whole module: What is it for, when

to use an when not to use it, etc.

6 Adjusting parameters

You should not be worried about the amount of adjustable parameters. Most of same are

easy to handle, in a way that they have sensible default values and modi�cations have little

inuence on the result. Still for some problems it might be useful to have the opportunity to

tailor the algorithm in a certain way.

42 6 ADJUSTING PARAMETERS

Some parameters need to be set in an intelligent way, i.e., you should take time and use your

knowledge about the problem to adjust them.

Firstly, the parameters of the local optimization depend heavily on the problem. That is

the mean error maxTss and the number of epochs maxEpochs should be set to values that

provide a good solution. Note that since (in case of our mutation operators) o�springs have

some knowledge of their parents, they need to be trained signi�cantly less1. If weight decay

is used, it should be adjusted ina a way that no over�tting occurs.

Secondly, the design of the �tness function is important, because that's our optimization

criteria. You should compute all �tness terms for your reference net (the maximal topology)

and give those higher weights, that you care about. Be aware that some constraints are

maintained, e.g., if a network can't learn the training patterns, its �tness should reect this

clearly.

The size of the population, the number of o�springs and the number of generations should be

in a sensible range. The more generations the better the result (with respect to your �tness

function !). The bigger the population and the higher the number of o�springs created in each

generation, the wider the exploration. For a given amount of time, you need always to decide

the relation of exploration to exploitation, e.g. creating many o�spring each generation vs.

creating fewer o�springs but use more generations.

Sensible values are, if possible, at least 30 generations, 30 networks in the parent population

and creating 10 o�springs each generation.

The probabilities of mutation should be set in a way that at the most 1% to 10% of the

links resp. units are mutated. Otherwise the o�springs will loose most of the knowledge of

the parents.

Acknowledgements

Several students made valuable contributions to the development of ENZO by studiing the

evolution of neural networks in their master thesis (Weisbrod, 1992, Zagorski, 1994, Sch�afer,

1994, Schubert, 1995). This implementation of Enzo goes back to the work of (Sch�afer, 1994,

Schubert, 1995).

1Since the networks usually are smaller and due to the knowledge transformation they possible speedup is

in the range from 10 to 50.

43

Part II

Enzo Implementation Guide

7 Design

The kernel of Enzo has a simple structure:

init-modules

read-control-file

{pre-evolution}

{evaluation}

{history}

{survival-of-the-fittest}

while not {stop-evolution} do

begin

{selection}

{crossover}

{mutation}

{optimization}

{evaluation}

{history}

{survival-of-the-fittest}

end

{post-evolution}

exit-modules

The names in brackets correspond to the evolutionary operators, which consist of several

modules. All modules of one operator type are linked to a library, e.g., each operator has a

corresponding library. This allows easy extension, and since all functionality is implemented

in the libraries, one can use the skeleton implementation of the algorithm to optimize other

things than neural networks by exchanging the libraries. The exible design also allows for a

good parallelization, if necessary.

Enzo was implemented in ANSI-C to allow portability to other systems. On the other hand

it would be very appealing to implement a genetic algorithm (as well as neural network

simulators) in a object oriented language like C++. To achieve some of the exibility of

an object-oriented design, all modules have a standardized interface, and their functions are

referred through function pointer, stored in a module table.

44 8 INTERFACES

7.1 Extension of Enzo by own modules

For extension exists a sample module, which should allow you to integrate an own module

specialized for your purposes. Just try it ...

To add an own module, the following things have to be done:

1. Design of the interface functions.

2. Implementation of the module.

3. Test the module extensively!

4. Add the new module in the global module table, and change the make�le such that your

code is compiled and linked to the program.

5. Don't forget the documentation of key words and functionality of the module.

7.2 Dependencies between modules ?

Ideally, there should be no dependencies !

Some kind of dependencies between certain operators seem still suggestive, e.g. during pre-

evolution one might also want to perform a local optimization. The corresponding module

is part of the optimization library. By sharing the keywords2 the pre-evolution module can

�nd the optimization function through the module table and call it via the module interface.

To provide this functionality a module should indicate if it wants to use a command line

exclusively, i.e., it should be removed and not further dispatched.

7.3 Sharing data

The nepomuk library provides a user data �eld additionally to the network information,

e.g., the structure networkData is used to store the data of the evolution process with the

individuals. This is necessary to append the �tness to the network, but it could also be used

to optimize the parameters of the evolution ! One should be careful with this global-like data.

Before adding a new �eld to this structure, alternatives that do not need global data exchange

should be evaluated.

8 Interfaces

There are three levels of interfaces to distinguish: the standardized module interfaces, the

nepomuk interface and the interface to the neural network simulator. They are discussed in

the following sections.

2This is similar to a message dispatcher in a window-based environment

8.1 Module interfaces 45

8.1 Module interfaces

Every module has to implement the following functions,which are made public through the

module table. Also has each module to de�ne a keyword, which activates the module during

initialization. The syntax is simply: keyword .

int module init(ModuleTableEntry *self, int msgc, char *msgv[])

This function handles the initialization of the module.

message = "initialize" : for general initialization;

message = "exit" : for general exit;

other keywords : speci�c initialization.

self the entry in the global module table.

return value:

0 : The message was not used.

1 : The message was used.

< 0 : A warning should be generated.

> 1 : An error message should be generated.

int module work(PopID *parents, PopID *offsprings, PopID *ref)

This is the working horse of every module.

These functions should not manipulate neither the parents nor the reference networks,

but only the o�springs. During selection, the concerning networks are copied to an

o�spring population, which can be manipulated.

char *module errMsg(int err code)

Returns a error message depending on err_code .

The activation of modules is done with the function enzo_actModule() . Furthermore the

function enzo_logprint(char *fmt, ...) allows for output in the log �le (as printf()).

8.2 The Nepomuk library

All Nepomuk interface functions have the pre�x kpm_, shortcut for Karlsruher Populations-

Manager;

Initialization and cleanup of Nepomuk :

kpm err kpm initialize(int max nets, int max pats)

Initializes the internal data structures and �elds of Nepomuk . The number of networks

to manage is given by max_nets and the number of pattern sets by max_pats.

46 8 INTERFACES

kpm err kpm exit(void)

For a clean exit this function needs to be called. It frees allocated memory and resets

Nepomuk .

Network management:

kpm err kpm setCurrentNet(NetID id)

Selects the network with the given id for further manipulation.

NetID kpm getCurrentNet(void)

Returns the NetID of the currently activated network.

NetID kpm loadNet(char *filename, void *usr data)

Loads a new network from the �le filename , makes it the active network and returns

its NetID . The given usr_data is appended to the structure.

kpm err kpm saveNet(NetID id, char *filename, char *netname)

Saves the network referred by id in the �le filename.

kpm err kpm deleteNet(NetID id)

Deletes the complete data structures of the network referred by id, i.e., the internal

representation as well as the userData.

kpm sortNets(CmpFct netcmp)

Sort the networks in Nepomuk using the function netcmp. The function works as

strcmp and keeps the networks sorted. Is netcmp == NULL no sorting is done.

NetID kpm copyNet(NetID id, void *usr data)

Creates a copy of the network, appends the given usr_data and returns the NetID.

NetID kpm newNet (void *usr data)

Creates a new (empty) network, appends the given usr_data and returns the NetID.

void *kpm getData(NetID id)

Returns the usr_data of the active network.

kpm err kpm getNetDescr(NetID id, NetDescr *n)

Returns a description of the active network, e.g. number of units, weights, etc.

Management of subpopulations:

PopID kpm newPopID(void)

Returns a new, unused population identi�cation.

kpm err kpm validPopId(PopID id)

Checks, if the identi�cation is valid. Returns KPM_NO_ERROR if valid and

KPM_INVALID_POPID otherwise.

kpm err kpm setPopMember(NetID n id, PopID p id)

Makes the network referred by n_id a member of the population referred by p_id .

8.3 Interface to a neural network simulator 47

PopID kpm getPopID(NetID id)

Returns the identi�cation of the population the network referred by n_id belongs to.

NetID kpm popFirstMember(PopID p id)

Returns the network identi�cation of the �rst network in the population referred by

p_id. If no network exists, NULL is returned, otherwise the network is made the active

network. The �rst network is the smallest network with respect to function passed to

kpm_init .

NetID kpm popNextMember(PopID p id, NetID n id)

Returns the network identi�cation of the network direct after n_id in the population

p_id. If none exists, NULL, else the network is mad the active network.

Pattern management:

PatID kpm loadPat(char *filename, void *usr data)

Loads a new pattern set from the �le filename, appends the usr_data and returns its

PatID .

kpm err kpm setCurrentPattern(PatID id)

Sets the pattern set referred by id.

PatID kpm getCurrentPattern(void)

Returns the PatID of the current pattern set.

void *kpm getPatData(PatID id)

Returns the usr_data of the pattern set referred by id.

PatID kpm getFirstPat(void)

Returns the PatID of the �rst pattern set, or NULL if none exists.

PatID kpm getNextPat(PatID pat)

Returns the PatID of the pattern set following the set referred by pat , or NULL if none

exists.

kpm err kpm setPatName(PatID id, char *name)

A name can be assigned to pattern set for identi�cation, e.g., "`learn"', "`test"', "`cross

validation"', : : : . This functions copies the given string to store it with the pattern set.

char *kpm getPatName(PatID id)

Returns the name of the pattern set referred by id or NULL if none exists.

8.3 Interface to a neural network simulator

All interface functions have the pre�x ksh_. They are located in the �le kr_shell.c which

is linked to the nepomuk library. There are about 100 interface functions for network manip-

ulation request, e.g., to delete units, to add units, to perform learning, etc...

Every simulator that o�ers a large set of manipulation functions, as the SNNS simulator does,

could be used with Enzo . The functions of the interface do almost nothing except calling

the appropriate functions of the neural network simulator.

48 9 IMPLEMENTATION INTERNALS

9 Implementation internals

9.1 Enzo

Enzo is no stand alone program, but uses a neural network simulator for network manip-

ulation. It provides an interface to the simulator that should allow for easy communication

with most simulators, that provide an interface for network manipulation. Figure 4 shows the

design and the interfaces of Enzo in connection with the SNNS simulator, �gure 9 shows

which libraries and objects are linked together to the executable enzo.

libpre.a

libstop.a

libselection.a

libmutation.a

libcrossover.a

libopt.a

libeval.a

libhistory.a

libsurvival.a

libpost.a

nepomuk.a

libkernel.a

libfunc.a

Population manager

and interface:
linked to

executable:

knete.o

networkData.o

subUtils.o

m_table.o

Operators:

Main modules:

Neural network

simulator:

knete

Figure 9: The �gure shows all libraries and objects which are linked together to form the executable

enzo.

The interface functions of the simulator are called solely through Enzo 's interface module

(kr shell.c). These interface functions are, in turn, called from the modules forming the evo-

lutionary operators or from the population manager Nepomuk . The handling of networks

and patterns is done exclusively via the Nepomuk interface. The main loop is linked with the

other parts through function pointers. It uses a module table to store all functions, and acti-

vates dependent on the command �le the specialized modules. The function pointers forming

an operator are stored in a corresponding table. Note that a pointer could appear here several

times.

9.2 Nepomuk 49

Summarizing, Enzo consists of three main parts: the main loop, the population manager

library Nepomuk and the specialized modules forming the evolutionary operators libraries.

9.2 Nepomuk

The population is managed with an array of constant size; the number of population members

is �xed at initialization. Note that the functions for subpopulation management are designed

for rather small population (linear search), i.e., several hundred members would be impossible.

This would also lead to a memory problem.

For an e�cient population management, free and used array elements are stored in lists, i.e.,

requirements can be satis�ed in O(1). See also �gure 10.

Population

free-list

�rstUsed �rstFree

used-list

usedSucc/Pred

: : :

freeSucc

� int used;

� int subPop;

� memNet snnsNet;

� NetID freeSucc;

� NetID usedSucc,

� usedPred;

� void *userData;

Figure 10: Data structure used in Nepomuk .

9.3 Necessary changes in SNNS modules

Two little changes had to be made to the original SNNS software. Since we are working with

a population of networks, the allocated memory for units, etc... should be in a descent range.

For that, the default block size for memory allocation in the �le kr_def.h were decreased.

50 9 IMPLEMENTATION INTERNALS

Furthermore, the handling of several networks needs additional interface functions to copy

network information into the data structures of the SNNS kernel. The functions located in the

�le enzo_kr_mem.c provide this functionality. It's included in the SNNS �le kr_mem.c. To ac-

tivate this extensions you have to compile the SNNS kernel library with the ag -D__ENZO__.

51

A An example command �le

#

sample command-file for tc-problem --- TR, 22.08.95 ---

#

#########################

files

#########################

network tc.net # name of network-file

learnpattern tc.pat # name of learnpattern-file

testpattern tc.pat # name of testpattern-file

historyFile hst # append this suffix to history files

netDestName tc_erg # save nets with this prefix

#########################

modules

#########################

----- initialize and pre-evolution ---

genpopNepo # initialize nepomuk

loadSNNSPat # load SNNS-Pattern

initPop # create and initialize Population

optInitPop # optimize initial population

----- stop-evolution ---

stopErr # stop if something's wrong with parents/offsprings

stopIt # stop after maxGenerations

----- selection ---

preferSel # use random prefer selection

----- mutation --

simpleMut # do simple mutation

mutUnits # delete or add hidden units

mutLinks # delete or add links

mutInputs # cut off input units

----- optimize --

nullWeg # delete useless nets

52 A AN EXAMPLE COMMAND FILE

relearn # scale weights before relearning

learnSNNS # do learning via SNNS-Function

prune # use pruning

cleanup # remove dead units

nullWeg # delete useless nets

learnSNNS # do re-learning via SNNS-Function

----- evaluate ---

learnRating # increase fitness if training patterns were not learned

topologyRating # increase fitness dependent on topology

----- history ---

histSimple # write standard information

histFitness # write fitness information

histWeights # write weight and unit information

Xhist # show fitness in a X-Window

----- survival --

fittestSurvive # sort nets by fitness (the lower the better)

----- post-evolution --

saveAll # save networks

#########################

parameters

#########################

maxGenerations 20 # stop after x generations

popsize 30 # population size

gensize 10 # new members each generation

preferfactor 3.0 # preferfactor for better nets

----- optimization --

learnModul learnSNNS # use standard SNNS-learning

learnfct Rprop # learning function to be set

learnparam 0.00 20.99 0.0 5.0 0.0 # and parameters

maxtss 0.01 # stop learning if error is smaller

maxepochs 100 # stop after x epochs

shuffle 1 # shuffle patterns

relearnfactor 0.5 # scale weights before relearning by x

53

threshold 0.2 # minimal treshhold for pruning

thresholdStart 0.5 # Start with this treshold

pruneEndGen 30 # use minimal treshold from this generation

----- mutation ---

probadd 0.2 # probability of adding a link

probdel 0.1 # probability of removing a link

probMutUnits 0.1 # probability of unit mutation

probMutUnitsSplit 0.9 # probability relation between adding and deleting

probMutInputs 0.6 # probability of input unit mutation

probMutInputsSplit 0.6 # probability relation between adding and deleting

----- evaluation ---

linear sum of:

weightRating 20.0 # number of weights times x

unitRating 20.0 # number of units times x

inputRating 200.0 # number of inputs units times x

tssRating 30.0 # mean error times x

noLearnRating 200.0 # add x if training patterns were not learned

----- history ---

Xgeometry 650 10 600 330 # size and position of X-Window

Xcoord 0.0 0.0 20.0 600.0 # size of the coordinate system

----- post-evolution --

saveNetsCnt 5 # save x nets

eof

Index

adapPrune

aveThreshold, 32

deltaThreshold, 32

threshold, 32

ancestry

ancestryPS, 39

historyFile, 39

bestGuessHigh

crossPattern, 35

hitDistance, 36

hitRating, 35

hitThreshold, 36

missRating, 35

noneRating, 35

bestGuessLow

crossPattern, 36

hitDistance, 36

hitRating, 36

hitThreshold, 36

missRating, 36

noneRating, 36

classes

crossPattern, 34

decisionThreshold, 35

highDesc, 35

hitRating, 35

lowDesc, 35

missRating, 35

noneRating, 35

cleanup

no parameters, 33

�ttestSurvive

NoOfO�springs, 40

genpopNepo

gensize, 14

popsize, 14

histCross

historyFile, 39

histFitness

historyFile, 38

histInputs

historyFile, 40

histSimple

historyFile, 38

histWeights

historyFile, 38

implant

implantProb, 28

initPop

gensize, 13

initFct, 13

initParam, 13

network, 13

popsize, 13

initTrain

initLearnfct, 15

initLearnparam, 15

initMaxepochs, 15

initMaxtss, 15

initShu�e, 15

inputInit

maxNoInput, 16

minNoInput, 16

jogWeights

jogLimit, 33

learnCV

CVepochs, 30

learnfct, 30

learnparam, 30

maxepochs, 30

shu�e, 30

learnRating

epochRating, 34

maxtss, 34

noLearnRating, 34

tssRating, 34

learnSNNS

learnfct, 29

learnparam, 29

maxepochs, 29

maxtss, 29

shu�e, 29

55

56 INDEX

linCross

probCross, 28

loadPop

network, 13

popsize, 14

loadSNNSPat

crosspattern, 14

learnpattern, 14

testpattern, 14

mutInputs

initRange, 24

probMutInputs, 23

probMutInputsSplit, 23

mutLinks

initRange, 22

probadd, 21

probdel, 21

probdelEndGen, 21

probdelStart, 21

sigmadel, 21

mutUnits

bypass, 22

initRange, 23

probMutUnits, 22

probMutUnitsSplit, 22

PWU, 22

mymodule

exit, 41

initialize, 41

myParam, 41

NFdelRules

delrules, 19

NFmutRules

ErrFact, 25

OvlFact, 25

probAddRand, 25

probDelWeak, 24

probMergeOvl, 24

probMergeSim, 24

probSplitErr, 24

SimFact, 25

WkFact, 25

NFmutWeights

mutCenterDev, 27

mutCenterMean, 27

mutRuleDev, 27

mutRuleMean, 27

mutSngDev, 27

mutSngMean, 27

mutWidthDev, 27

mutWidthMean, 27

NFtopoEval

localRating, 37

ovlRating, 37

nullWeg

no parameter, 33

optInitPop

learnModul, 16

maxtss, 16

Parameter

ancestryPS (ancestry), 39

aveThreshold (adapPrune), 32

bypass (mutUnits), 22

crossHamRating (tssEval), 37

crossHamThresh (tssEval), 37

crossPattern (bestGuessHigh), 35

crossPattern (bestGuessLow), 36

crossPattern (classes), 34

crosspattern (loadSNNSPat), 14

crossPattern (tssEval), 37

crossTssRating (tssEval), 37

CVepochs (learnCV), 30

decisionThreshold (classes), 35

delrules (NFdelRules), 19

deltaThreshold (adapPrune), 32

epochRating (learnRating), 34

ErrFact (NFmutRules), 25

exit (mymodule), 41

gensize (genpopNepo), 14

gensize (initPop), 13

gensize (preferSel), 20

highDesc (classes), 35

historyFile (ancestry), 39

historyFile (histCross), 39

historyFile (histFitness), 38

historyFile (histInputs), 40

historyFile (histSimple), 38

historyFile (histWeights), 38

hitDistance (bestGuessHigh), 36

hitDistance (bestGuessLow), 36

INDEX 57

hitRating (bestGuessHigh), 35

hitRating (bestGuessLow), 36

hitRating (classes), 35

hitThreshold (bestGuessHigh), 36

hitThreshold (bestGuessLow), 36

implantProb (implant), 28

initFct (initPop), 13

initFct (startPop), 17

initialize (mymodule), 41

initLearnfct (initTrain), 15

initLearnparam (initTrain), 15

initMaxepochs (initTrain), 15

initMaxtss (initTrain), 15

initParam (initPop), 13

initParam (startPop), 18

initRange (mutInputs), 24

initRange (mutLinks), 22

initRange (mutUnits), 23

initRange (simpleMut), 20

initShu�e (initTrain), 15

inputRating (topologyRating), 34

jogLimit (jogWeights), 33

learnfct (learnCV), 30

learnfct (learnSNNS), 29

learnModul (optInitPop), 16

learnparam (learnCV), 30

learnparam (learnSNNS), 29

learnpattern (loadSNNSPat), 14

localRating (NFtopoEval), 37

lowDesc (classes), 35

maxepochs (learnCV), 30

maxepochs (learnSNNS), 29

maxGenerations (stopIt), 19

maxNoInput (inputInit), 16

maxtss (learnRating), 34

maxtss (learnSNNS), 29

maxtss (optInitPop), 16

minNoInput (inputInit), 16

missRating (bestGuessHigh), 35

missRating (bestGuessLow), 36

missRating (classes), 35

mutCenterDev (NFmutWeights), 27

mutCenterMean (NFmutWeights), 27

mutRuleDev (NFmutWeights), 27

mutRuleMean (NFmutWeights), 27

mutSngDev (NFmutWeights), 27

mutSngMean (NFmutWeights), 27

mutWidthDev (NFmutWeights), 27

mutWidthMean (NFmutWeights), 27

myParam (mymodule), 41

netDestName (saveAll), 41

network (initPop), 13

network (loadPop), 13

network (startPop), 17

no parameter (nullWeg), 33

no parameter (stopErr), 19

no parameters (cleanup), 33

noLearnRating (learnRating), 34

noneRating (bestGuessHigh), 35

noneRating (bestGuessLow), 36

noneRating (classes), 35

NoOfO�springs (�ttestSurvive), 40

NoOfO�springs (unifSel), 19

OvlFact (NFmutRules), 25

ovlRating (NFtopoEval), 37

popsize (genpopNepo), 14

popsize (initPop), 13

popsize (loadPop), 14

popsize (startPop), 17

preferfactor (preferSel), 20

probadd (mutLinks), 21

probadd (simpleMut), 20

probAddRand (NFmutRules), 25

probCross (linCross), 28

probdel (mutLinks), 21

probdel (simpleMut), 20

probdelEndGen (mutLinks), 21

probdelStart (mutLinks), 21

probDelWeak (NFmutRules), 24

probMergeOvl (NFmutRules), 24

probMergeSim (NFmutRules), 24

probMutInputs (mutInputs), 23

probMutInputsSplit (mutInputs), 23

probMutUnits (mutUnits), 22

probMutUnitsSplit (mutUnits), 22

probSplitErr (NFmutRules), 24

pruneEndGen (prune), 31

PWU (mutUnits), 22

relearnfactor (relearn), 32

saveNetsCnt (saveAll), 41

selProb (unifSel), 19

shu�e (learnCV), 30

shu�e (learnSNNS), 29

sigmadel (mutLinks), 21

58 INDEX

SimFact (NFmutRules), 25

startnet (startPop), 17

testpattern (loadSNNSPat), 14

threshold (adapPrune), 32

threshold (prune), 31

thresholdStart (prune), 31

tssRating (learnRating), 34

unitRating (topologyRating), 33

weightProb (weightInit), 18

weightRating (topologyRating), 33

WkFact (NFmutRules), 25

Xcoord (Xhist), 40

Xgeometry (Xhist), 40

preferSel

gensize, 20

preferfactor, 20

prune

pruneEndGen, 31

threshold, 31

thresholdStart, 31

relearn

relearnfactor, 32

saveAll

netDestName, 41

saveNetsCnt, 41

simpleMut

initRange, 20

probadd, 20

probdel, 20

startPop

initFct, 17

initParam, 18

network, 17

popsize, 17

startnet, 17

stopErr

no parameter, 19

stopIt

maxGenerations, 19

topologyRating

inputRating, 34

unitRating, 33

weightRating, 33

tssEval

crossHamRating, 37

crossHamThresh, 37

crossPattern, 37

crossTssRating, 37

unifSel

NoOfO�springs, 19

selProb, 19

weightInit

weightProb, 18

Xhist

Xcoord, 40

Xgeometry, 40

REFERENCES 59

References

Braun, Heinrich, Johannes Feulner, and Volker Ullrich. In Neuro Nimes 91.

Goldberg, David (1989) Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley.

McDonell, John and Don Waagen (1993). Neural structure design by evolutionary program-

ming. NCCOSC, RDT&E Division, San Diego, CA 92152.

Reeves, Colin (1993) Modern Heuristic Techniques for Combinatorial Problems, volume 1.

Orient Longman.

Riedmiller, Martin and Heinrich Braun (1993) A direct adaptive method for faster backprop-

agation learning: The RProp algorithm. In Proceedings of the ICNN 93, San Francisco.

Sch�afer, Johannes (1994) Evolution Neuronaler Netze zur Erkennung von handgeschriebenen

Zi�ern. Diplomarbeit, Univerit�at Karlsruhe, Institut f�ur Logik Komplexit�at und Deduk-

tionssysteme.

Schubert, Matthias (1995) Evolution�are Optimierung Neuronaler Netze zur Zeitreihenvorher-

sage. Diplomarbeit, Univerit�at Karlsruhe, Institut f�ur Logik Komplexit�at und Deduktion-

ssysteme.

Schwefel, Hans-Paul (1995) Introduction to the theory of neural computation. Santa Fe

Institute, Studies in the sciences of complexity, lecture notes. Addison-Wesley.

Weisbrod, Joachim (1992) Einsatz Genetischer Algorithmen zur Optimierung der Topologie

mehrschichtiger Feedforward-Netzwerke. Diplomarbeit, Universit�at Karlsruhe, Institut f�ur

Logik, Komplexit�at und Deduktionssysteme.

Zagorski, Peter (1994) Entwicklung Evolution�arer Algorithmen zur Optimierung der Topolo-

gie und des Generalisierungsverhaltens von Multilayer Perceptrons. Diplomarbeit, Uni-

verit�at Karlsruhe, Institut f�ur Logik Komplexit�at und Deduktionssysteme.

