KIT | KIT-Bibliothek | Impressum | Datenschutz

Engineering Graph Clustering Algorithms

Kappes, Andrea

Abstract:

Networks in the sense of objects that are related to each other are ubiquitous. In many areas, groups of objects that are particularly densely connected, so called clusters, are semantically interesting. In this thesis, we investigate two different approaches to partition the vertices of a network into clusters. The first quantifies the goodness of a clustering according to the sparsity of the cuts induced by the clusters, whereas the second is based on the recently proposed measure surprise.


Volltext §
DOI: 10.5445/IR/1000049269
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Hochschulschrift
Publikationsjahr 2015
Sprache Englisch
Identifikator urn:nbn:de:swb:90-492696
KITopen-ID: 1000049269
Verlag Karlsruher Institut für Technologie (KIT)
Art der Arbeit Dissertation
Fakultät Fakultät für Informatik (INFORMATIK)
Institut Institut für Theoretische Informatik (ITI)
Prüfungsdaten 28.04.2015
Schlagwörter graph clustering, community detection, surprise
Referent/Betreuer Wagner, D.
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page