KIT | KIT-Bibliothek | Impressum | Datenschutz

Coercivity and the Calderon Operator on an Unbounded Domain

Ritterbusch, Sebastian

Abstract:

Detection of metallic objects in soil lead to the mathematical model of Maxwell's equations in a two-layered space. The full space problem is reduced to a weak formulation for a half-space with a non-local boundary condition using the exterior Calderon operator. For non-dissipative media the Calderon operator exhibits singular spectral properties at the infinite boundary plane. Using weighted Sobolev spaces the weak formulation is uniquely solvable by generalized coercivity conditions.


Volltext §
DOI: 10.5445/IR/1000013885
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Algebra und Geometrie (IAG)
Publikationstyp Hochschulschrift
Publikationsjahr 2009
Sprache Englisch
Identifikator urn:nbn:de:swb:90-138853
KITopen-ID: 1000013885
Verlag Universität Karlsruhe (TH)
Art der Arbeit Dissertation
Fakultät Fakultät für Mathematik (MATH)
Institut Institut für Algebra und Geometrie (IAG)
Prüfungsdaten 11.02.2009
Schlagwörter Maxwell equations, Calderon operator, Coercivity, Integral operators, Weak solutions, Scattering theory
Referent/Betreuer Kirsch, A.
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page