KIT | KIT-Bibliothek | Impressum | Datenschutz

Efficient Nonlinear Bayesian Estimation based on Fourier Densities

Brunn, Dietrich; Sawo, Felix; Hanebeck, Uwe D.

Efficiently implementing nonlinear Bayesian estimators is still not a fully solved problem. For practical applications, a trade-off between estimation quality and demand on computational resources has to be found. In this paper, the use of nonnegative Fourier series, so-called Fourier densities, for Bayesian estimation is proposed. By using the absolute square of Fourier series for the density representation, it is ensured that the density stays nonnegative. Nonetheless, approximation of arbitrary probability density functions can be made by using the Fourier integral formula. An efficient bayesian estimator algorithm with constant complexity for nonnegative Fourier series is derived and demonstrated by means of an example.

Open Access Logo

Volltext §
DOI: 10.5445/IR/1000013895
Zugehörige Institution(en) am KIT Institut für Anthropomatik (IFA)
Publikationstyp Proceedingsbeitrag
Jahr 2006
Sprache Englisch
Identifikator ISBN: 1-4244-0567-X
KITopen-ID: 1000013895
Erschienen in Proceedings / 2006 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 3 - 4 Sept. 2006, Heidelberg, Germany
Verlag IEEE Service Center, Piscataway (NJ)
Seiten 312 - 322
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page