KIT | KIT-Bibliothek | Impressum | Datenschutz
Open Access Logo
§
Volltext
DOI: 10.5445/IR/1000019281
Originalveröffentlichung
DOI: 10.1137/S0036139998334895
Scopus
Zitationen: 125
Web of Science
Zitationen: 115

A multiphase field concept: numerical simulations of moving phase boundaries and multiple junctions

Garcke, Harald; Nestler, Britta; Stoth, Barbara

Abstract:
We present numerical simulations which support the formal asymptotic analysis relating a multiorder parameter Allen-Cahn system to a multiphase interface problem with curvaturedependent evolution of the interfaces and angle conditions at triple junctions. Within the gradient energy of the Allen-Cahn system, the normal to an interface between phases i and j is modeled by the irreducible representations (uiruj ¡ujrui)=juiruj ¡ ujruij, where ui and uj are the ith and jth components of the vectorial order parameter u 2 RN. In the vectorial case, the dependence of the limiting surface tensions and mobilities on the bulk potentials of the Allen{Cahn system is not given explicitly but in terms of all the N components of the planar stationary wave solutions. One of the issues of this paper is to find bulk potentials which allow a rather easy access to the resulting surface tensions and mobilities. We compare numerical computations for planar and circular phase boundaries in two- and threephase systems. The difference is that in a three-phase system, the third phase generally will be present in the interfacial region between two other phases ... mehr


Zugehörige Institution(en) am KIT Institut für Zuverlässigkeit von Bauteilen und Systemen (IZBS)
Publikationstyp Zeitschriftenaufsatz
Jahr 1999
Sprache Englisch
Identifikator ISSN: 0036-1399, 0368-4245, 1095-712X
URN: urn:nbn:de:swb:90-192812
KITopen-ID: 1000019281
Erschienen in SIAM journal on applied mathematics
Band 60
Heft 1
Seiten 295-315
Schlagworte phase field models, multiphase diffusion, Allen-Cahn systems, triple junction dynamics, numerical simulations
Nachgewiesen in Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page