KIT | KIT-Bibliothek | Impressum | Datenschutz

Parameter Identification and Reconstruction for Distributed Phenomena Based on Hybrid Density Filter

Sawo, Felix; Huber, Marco F.; Hanebeck, Uwe D.

Abstract:

This paper addresses the problem of model-based reconstruction and parameter identification of distributed phenomena characterized by partial differential equations. The novelty of the proposed method is the systematic approach and the integrated treatment of uncertainties, which naturally occur in the physical system and arise from noisy measurements. The main challenge of accurate reconstruction is that model parameters, i.e., diffusion coefficients, of the physical model are not known in advance and usually need to be identified. Generally, the problem of parameter identification leads to a nonlinear estimation problem. Hence, a novel efficient recursive procedure is employed. Unlike other estimators, the so-called Hybrid Density Filter not only assures accurate estimation results for nonlinear systems, but also offers an efficient processing. By this means it is possible to reconstruct and identify distributed phenomena monitored by autonomous wireless sensor networks. The performance of the proposed estimation method is demonstrated by means of simulations.


Volltext §
DOI: 10.5445/IR/1000034835
Originalveröffentlichung
DOI: 10.1109/ICIF.2007.4408119
Dimensions
Zitationen: 6
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Informatik – Institut für Anthropomatik (IFA)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2007
Sprache Englisch
Identifikator ISBN: 978-0-662-45804-3
urn:nbn:de:swb:90-348359
KITopen-ID: 1000034835
Erschienen in Proceedings of the 10th International Conference on Information Fusion (Fusion 2007), Quebec, Canada, July, 2007
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 8 S.
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page