KIT | KIT-Bibliothek | Impressum

The Sliced Gaussian Mixture Filter for Efficient Nonlinear Estimation

Klumpp, Vesa; Sawo, Felix; Hanebeck, Uwe D.; Fränken, Dietrich

Abstract:
This paper addresses the efficient state estimation for mixed linear/nonlinear dynamic systems with noisy measurements. Based on a novel density representation - sliced Gaussian mixture density - the decomposition into a (conditionally) linear and nonlinear estimation problem is derived. The systematic approximation procedure minimizing a certain distance measure allows the derivation of (close to) optimal and deterministic estimation results. This leads to high-quality representations of the measurement-conditioned density of the states and, hence, to an overall more efficient estimation process. The performance of the proposed estimator is compared to state-of-the-art estimators, like the well-known marginalized particle filter.


Zugehörige Institution(en) am KIT Institut für Anthropomatik (IFA)
Publikationstyp Proceedingsbeitrag
Jahr 2008
Sprache Englisch
Identifikator ISBN: 978-3-8007-3092-6
URN: urn:nbn:de:swb:90-348615
KITopen ID: 1000034861
Erschienen in Proceedings of the 11th International Conference on Information Fusion (Fusion 2008), Cologne, Germany, June 30 2008-July 3 2008
Verlag IEEE, Piscataway
Seiten 1-8
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page