KIT | KIT-Bibliothek | Impressum | Datenschutz

Fitting Conics to Noisy Data Using Stochastic Linearization

Baum, Marcus; Hanebeck, Uwe D.

Fitting conic sections, e.g., ellipses or circles, to noisy data points is a fundamental sensor data processing problem, which frequently arises in robotics. In this paper, we introduce a new procedure for deriving a recursive Gaussian state estimator for fitting conics to data corrupted by additive Gaussian noise. For this purpose, the original exact implicit measurement equation is reformulated with the help of suitable approximations as an explicit measurement equation corrupted by multiplicative noise. Based on stochastic linearization, an efficient Gaussian state estimator is derived for the explicit measurement equation. The performance of the new approach is evaluated by means of a typical ellipse fitting scenario.

Open Access Logo

Volltext §
DOI: 10.5445/IR/1000035123
DOI: 10.1109/IROS.2011.6094982
Zugehörige Institution(en) am KIT Institut für Anthropomatik (IFA)
Publikationstyp Proceedingsbeitrag
Jahr 2011
Sprache Englisch
Identifikator ISBN: 978-1-61284-454-1
KITopen-ID: 1000035123
Erschienen in Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011), San Francisco, California, USA, September 25-30, 2011
Verlag IEEE, Piscataway
Seiten 2050-2055
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page