KIT | KIT-Bibliothek | Impressum | Datenschutz
Open Access Logo
§
Volltext
URN: urn:nbn:de:swb:90-469693
Originalveröffentlichung
DOI: 10.5194/acpd-15-8883-2015

Comparing the CarbonTracker and TM5-4DVar data assimilation systems for CO₂ surface flux inversions

Babenhauserheide, A.; Basu, S.; Houweling, S.; Peters, W.; Butz, A.

Abstract:
Data assimilation systems allow for estimating surface fluxes of greenhouse gases from atmospheric concentration measurements. Good knowledge about fluxes is essential to understand how climate change affects ecosystems and to characterize feedback mechanisms. Based on assimilation of more than one year of atmospheric in-situ concentration measurements, we compare the performance of two established data assimilation models, CarbonTracker and TM5-4DVar, for CO2 flux estimation. CarbonTracker uses an Ensemble Kalman Filter method to optimize fluxes on ecoregions. TM5-4DVar employs a 4-D variational method and optimizes fluxes on a 6° × 4° longitude/latitude grid. Harmonizing the input data allows analyzing the strengths and weaknesses of the two approaches by direct comparison of the modelled concentrations and the estimated fluxes. We further assess the sensitivity of the two approaches to the density of observations and operational parameters such as temporal and spatial correlation lengths.

Our results show that both models provide optimized CO2 concentration fields of similar quality. In Antarctica CarbonTracker underestimate ... mehr


Zugehörige Institution(en) am KIT Fakultät für Physik (PHYSIK)
Institut für Meteorologie und Klimaforschung - Atmosphärische Spurenstoffe und Fernerkundung (IMK-ASF)
Publikationstyp Zeitschriftenaufsatz
Jahr 2015
Sprache Englisch
Identifikator ISSN: 1680-7367

KITopen-ID: 1000046969
HGF-Programm 12.03.01 (POF III, LK 01)
Erschienen in Atmospheric Chemistry and Physics Discussions
Band 15
Heft 6
Seiten 8883-8932
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page