KIT | KIT-Bibliothek | Impressum | Datenschutz

Fatigue Behavior of Ultrafine-Grained Medium Carbon Steel with Different Carbide Morphologies Processed by High Pressure Torsion

Ruffing, Christoph; Kobler, Aaron; Courtois-Manara, Eglantine; Prang, Robby; Kübel, Christian; Ivanisenko, Yulia; Kerscher, Eberhard

The increased attention ultrafine grained (UFG) materials have received over the last decade has been inspired by their high strength in combination with a remarkable ductility, which is a promising combination for good fatigue properties. In this paper, we focus on the effect of different carbide morphologies in the initial microstructure on the fatigue behavior after high pressure torsion (HPT) treatment of SAE 1045 steels. The two initial carbide morphologies are spheroidized as well as tempered states. The HPT processing increased the hardness of the spheroidized and tempered states from 169 HV and 388 HV to a maximum of 511 HV and 758 HV, respectively. The endurance limit increased linearly with hardness up to about 500 HV independent of the carbide morphology. The fracture surfaces revealed mostly flat fatigue fracture surfaces with crack initiation at the surface or, more often, at non-metallic inclusions. Morphology and crack initiation mechanisms were changed by the severe plastic deformation. The residual fracture surface of specimens with spheroidal initial microstructures showed well-defined dimple structures also after HPT at high fatigue limits and high hardness values. ... mehr

Open Access Logo

Volltext §
DOI: 10.5445/IR/1000048013
DOI: 10.3390/met5020891
Zitationen: 7
Web of Science
Zitationen: 7
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Zeitschriftenaufsatz
Jahr 2015
Sprache Englisch
Identifikator ISSN: 2075-4701
KITopen-ID: 1000048013
HGF-Programm 49.02.01 (POF III, LK 02)
Erschienen in Metals
Band 5
Heft 2
Seiten 891-909
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Schlagworte severe plastic deformation; high pressure torsion; fatigue; carbide morphology; shear bands; high strength steels; microstructure; fracture surface
Nachgewiesen in Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page