KIT | KIT-Bibliothek | Impressum | Datenschutz

Learning Behavior Models for Interpreting and Predicting Traffic Situations

Gindele, Tobias


In this thesis, we present Bayesian state estimation and machine learning methods for predicting traffic situations. The cognitive ability to assess situations and behaviors of traffic participants, and to anticipate possible developments is an essential requirement for several applications in the traffic domain, especially for self-driving cars. We present a method for learning behavior models from unlabeled traffic observations and develop improved learning methods for decision trees.

Volltext §
DOI: 10.5445/IR/1000048618
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Informatik – Institut für Anthropomatik (IFA)
Publikationstyp Hochschulschrift
Publikationsjahr 2014
Sprache Englisch
Identifikator urn:nbn:de:swb:90-486189
KITopen-ID: 1000048618
Verlag Karlsruher Institut für Technologie (KIT)
Art der Arbeit Dissertation
Fakultät Fakultät für Informatik (INFORMATIK)
Institut Fakultät für Informatik – Institut für Anthropomatik (IFA)
Prüfungsdaten 30.07.2014
Schlagwörter state estimation and prediction, dynamic Bayesian networks, machine learning, decision trees, autonomous driving
Referent/Betreuer Dillmann, R.
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page