KIT | KIT-Bibliothek | Impressum | Datenschutz

Spectral properties of elliptic operator with double-contrast coefficients near a hyperplane

Khrabustovskyi, Andrii; Plum, Michael

Abstract:

In this paper we study the asymptotic behaviour as e ! 0 of the spectrum of the elliptic operator A e = 􀀀 1 be div(aeÑ) posed in a bounded domain W Rn (n 2) subject to Dirichlet boundary conditions on ¶W. When e !0 both coefficients ae and be become high contrast in a small neighborhood of a hyperplane G intersecting W. We prove that the spectrum of A e converges to the spectrum of an operator acting in L2(W)L2(G) and generated by the operation 􀀀D in WnG, the Dirichlet boundary conditions on ¶W and certain interface conditions on G containing the spectral parameter in a nonlinear manner. The eigenvalues of this operator may accumulate at a finite point. Then we study the same problem, when W is an infinite straight strip (“waveguide”) and G is parallel to its boundary. We show that A e has at least one gap in the spectrum when e is small enough and describe the asymptotic behaviour of this gap as e ! 0. The proofs are based on methods of homogenization theory.


Volltext §
DOI: 10.5445/IR/1000050409
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2015
Sprache Englisch
Identifikator ISSN: 2365-662X
urn:nbn:de:swb:90-504090
KITopen-ID: 1000050409
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 35 S.
Serie CRC 1173 ; 2015/5
Schlagwörter high-contrast coefficients, spectrum asymptotics, homogenization, periodic, waveguides, spectral gaps
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page