KIT | KIT-Bibliothek | Impressum | Datenschutz
Open Access Logo
URN: urn:nbn:de:swb:90-540722
DOI: 10.1088/1757-899X/102/1/012022
Zitationen: 8

Thermal and mechanical properties of selected 3D printed thermoplastics in the cryogenic temperature regime

Weiss, K.-P.; Bagrets, N.; Lange, C.; Goldacker, W.; Wohlgemuth, J.

Abstract (englisch):
Insulating materials for use in cryogenic boundary conditions are still limited to a proved selection as Polyamid, Glasfiber reinforced resins, PEEK, Vespel etc. These materials are usually formed to parts by mechanical machining or sometimes by cast methods. Shaping complex geometries in one piece is limited. Innovative 3D printing is now an upcoming revolutionary technology to construct functional parts from a couple of thermoplastic materials as ABS, Nylon and others which possess quite good mechanical stability and allow realizing very complex shapes with very subtle details. Even a wide range of material mixtures is an option and thermal treatments can be used to finish the material structure for higher performance. The use of such materials in cryogenic environment is very attractive but so far poor experience exists. In this paper, first investigations of the thermal conductivity, expansion and mechanical strength are presented for a few selected commercial 3D material samples to evaluate their application prospects in the cryogenic temperature regime.

Zugehörige Institution(en) am KIT Institut für Funktionelle Grenzflächen (IFG)
Institut für Technische Physik (ITEP)
Publikationstyp Zeitschriftenaufsatz
Jahr 2015
Sprache Englisch
Identifikator ISSN: 1757-8981
KITopen ID: 1000054072
HGF-Programm 31.03.04; LK 01
Erschienen in IOP Conference Series: Materials Science and Engineering
Band 102
Seiten 012022
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page