KIT | KIT-Bibliothek | Impressum | Datenschutz

Estimation of Cointegrated Multivariate Continuous-Time Autoregressive Moving Average Processes

Scholz, Markus

Abstract (englisch):

In this thesis we consider cointegrated MCARMA processes. A canonical representation is derived and the probabilistic properties are investigated. A step-wise estimation method of the model parameters from discrete-time observations is derived. Super-consistency for long-run and consistency for short-run parameter estimator are established. The limiting distributions of the estimators are deduced. Lastly, a simulation study to demonstrate the applicability of the estimation method is presented.


Volltext §
DOI: 10.5445/IR/1000058237
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Publikationstyp Hochschulschrift
Publikationsjahr 2016
Sprache Englisch
Identifikator urn:nbn:de:swb:90-582375
KITopen-ID: 1000058237
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 228 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Mathematik (MATH)
Institut Institut für Stochastik (STOCH)
Prüfungsdaten 22.06.2016
Schlagwörter Cointegration, MCARMA, Estimation, Linear State Space Models
Referent/Betreuer Fasen-Hartmann, V.
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page