KIT | KIT-Bibliothek | Impressum | Datenschutz

Clustering through High Dimensional Data Scaling: Applications and Implementations

Murtagh, Fionn; Contreras, Pedro

Abstract:

To analyse very high dimensional data, or large data volumes, we study random projection. Since hierarchically clustered data can be scaled in one dimension, seriation or unidimensional scaling is our primary objective. Having determined a unidimensional scaling of the multidimensional data cloud, this is followed by clustering. In many past case studies we carried out such clustering, using the Baire, or longest common prefix, metric and, simultaneously, ultrametric. In this paper, we examine properties of the seriation, and of the induction of the clustering on the data summarization, through seriation. Simulations are described as well as a small, illustrative example using Fisher’s iris data.


Volltext §
DOI: 10.5445/KSP/1000058749/08
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Wirtschaftswissenschaften – Institut für Informationswirtschaft und Marketing (IISM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2017
Sprache Englisch
Identifikator ISSN: 2363-9881
urn:nbn:de:swb:90-669259
KITopen-ID: 1000066925
Erschienen in Archives of Data Science, Series A (Online First)
Band 2
Heft 1
Seiten 16 S. online
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page