KIT | KIT-Bibliothek | Impressum

Precision Calculations in New Physics Models

Wlotzka, Alexander

Abstract (englisch):
Even after the discovery of a Higgs boson fundamental questions of particle physics remain unanswered. Neither the origin of the baryon-antibaryon asymmetry of the universe, nor the nature of Dark Matter is understood. Two models of New Physics capable of addressing these problems are investigated here. In the first part of the thesis branching ratios for the decays of the lightest up-type squark in the Minimal Supersymmetric Extension of the Standard Model (MSSM) are calculated to high precision for scenarios with compressed supersymmetric spectra by including the finite width of the $W$ boson. These branching ratios affect the limits on the model which can be set by experiments. The second part concentrates on predictions of cross sections for squark gluino production in the MSSM. Spin correlations between the production and the decay of the gluino as well as next-to-leading order corrections are taken into account and a framework consistently treating both the production and the decay of the squark and the gluino in an event generator is elaborated. First results show that the impact of spin correlations on differential cross sec ... mehr


Zugehörige Institution(en) am KIT Institut für Theoretische Physik (ITP)
Publikationstyp Hochschulschrift
Jahr 2017
Sprache Englisch
Identifikator DOI(KIT): 10.5445/IR/1000070008
URN: urn:nbn:de:swb:90-700088
KITopen ID: 1000070008
Verlag Karlsruhe
Umfang VI, 101 S.
Abschlussart Dissertation
Fakultät Fakultät für Physik (PHYSIK)
Institut Institut für Theoretische Physik (ITP)
Prüfungsdatum 19.05.2017
Referent/Betreuer Prof. M. Mühlleitner
Schlagworte BSM, MSSM, Supersymmetry, Squark, Gluino, Spin Correlations, Stop, Electroweak Phase Transition, 2HDM
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page