KIT | KIT-Bibliothek | Impressum

Limit laws for the diameter of a set of random points from a distribution supported by a smoothly bounded set

Schrempp, Michael

Abstract (englisch):
In this thesis we study the asymptotic behavior of the maximum interpoint distance of random points in a d-dimensional set with a unique diameter and a smooth boundary at the poles. The main result covers the case of uniformly distributed points within a d-dimensional ellipsoid with a unique major axis. Moreover, several generalizations of the main result are established, for example a limit law for the maximum interpoint distance of random points from a Pearson type II distribution.


Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Publikationstyp Hochschulschrift
Jahr 2017
Sprache Englisch
Identifikator DOI(KIT): 10.5445/IR/1000071482
URN: urn:nbn:de:swb:90-714823
KITopen ID: 1000071482
Verlag Karlsruhe
Umfang 159 S.
Abschlussart Dissertation
Fakultät Fakultät für Mathematik (MATH)
Institut Institut für Stochastik (STOCH)
Prüfungsdatum 24.05.2017
Referent/Betreuer Prof. N. Henze
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page