KIT | KIT-Bibliothek | Impressum
Open Access Logo
§
Volltext
DOI: 10.5445/IR/1000075943

Convergence analysis of energy conserving explicit local time-stepping methods for the wave equation

Grote, Marcus J.; Mehlin, Michaela; Sauter, Stefan A.

Abstract:
Local adaptivity and mesh refinement are key to the efficient simulation of wave phenomena in heterogeneous media or complex geometry. Locally refined meshes, however, dictate a small time-step everywhere with a crippling effect on any explicit time-marching method. In [18] a leap-frog (LF) based explicit local time-stepping (LTS) method was proposed, which overcomes the severe bottleneck due to a few small elements by taking small time-steps in the locally refined region and larger steps elsewhere. Here optimal convergence rates are rigorously proved for the fully-discrete LTS-LF method when combined with a standard conforming finite element method (FEM) in space. Numerical results further illustrate the usefulness of the LTS-LF Galerkin FEM in the presence of corner singularities.


Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht
Jahr 2017
Sprache Englisch
Identifikator ISSN: 2365-662X
URN: urn:nbn:de:swb:90-759433
KITopen ID: 1000075943
Verlag KIT, Karlsruhe
Umfang 28 S.
Serie CRC 1173 ; 2017/27
Schlagworte wave propagation, finite element methods, explicit time integration, leap-frog method, error analysis, convergence theory
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page