KIT | KIT-Bibliothek | Impressum | Datenschutz

Local Wellposedness of Nonlinear Maxwell Equations

Spitz, Martin

Abstract (englisch):

In this work we establish a local wellposedness theory of macroscopic Maxwell equations with instantaneous material laws on domains with perfectly conducting boundary. These equations give rise to a quasilinear initial boundary value problem with characteristic boundary. We provide a priori estimates and a differentiability theorem in arbitrary regularity for the corresponding linear nonautonomous hyperbolic system of partial differential equations. A fixed point argument then yields a unique solution of the nonlinear problem in $H^m$ with $m \geq 3$. We further show a blow-up criterion in the Lipschitz-norm and the continuous dependance on the data.


Volltext §
DOI: 10.5445/IR/1000078030
Veröffentlicht am 18.12.2017
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Publikationstyp Hochschulschrift
Publikationsjahr 2017
Sprache Englisch
Identifikator urn:nbn:de:swb:90-780302
KITopen-ID: 1000078030
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 219 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Mathematik (MATH)
Institut Institut für Analysis (IANA)
Prüfungsdatum 26.07.2017
Projektinformation SFB 1173, 258734477 (DFG, DFG KOORD, SFB 1173/1 2015)
Schlagwörter nonlinear Maxwell equations, perfectly conducting boundary conditions, quasilinear initial boundary value problem, characteristic boundary, local wellposedness, hyperbolic system, a priori estimates, regularity theory, blow-up criterion, continuous dependance
Nachgewiesen in OpenAlex
Referent/Betreuer Schnaubelt, R.
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page