KIT | KIT-Bibliothek | Impressum | Datenschutz

On the efficiency of the Peaceman-Rachford ADI-dG method forwave-type methods

Hochbruck, Marlis; Köhler, Jonas

Abstract:

The Peaceman{Rachford alternating direction implicit (ADI) method is considered for the time-integration of a class of wavetype equations for linear, isotropic materials on a tensorial domain, e.g., a cuboid in 3D or a rectangle in 2D. This method is known to be unconditionally stable and of classical order two. So far, it has been applied to specific problems and is mostly combined with finite differences in space, where it can be implemented at the cost of an explicit method. In this paper, we consider the ADI method for a discontinuous Galerkin (dG) space discretization.We characterize a large class of first-order differential equations for which we show that on tensorial meshes, the method can be implemented with optimal (linear) complexity.


Volltext §
DOI: 10.5445/IR/1000078144
Veröffentlicht am 20.12.2017
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2017
Sprache Englisch
Identifikator ISSN: 2365-662X
urn:nbn:de:swb:90-781449
KITopen-ID: 1000078144
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 8 S.
Serie CRC 1173 ; 2017/34
Schlagwörter time-integration, alternating direction implicit, ADI, unconditional stability, discontinuous Galerkin, efficiency
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page