KIT | KIT-Bibliothek | Impressum | Datenschutz

Nonlinear Schrödinger equation, differentiation by parts and modulation spaces

Chaichenets, Leonid ORCID iD icon; Hundertmark, Dirk; Kunstmann, Peer; Pattakos, Nikolaos

Abstract:

We show the local wellposedness of the Cauchy problem for the cubic nonlinear Schrodinger equation in the modulation space M$^{s}$$_{p,q}$(R) where 1 $a \leq \ $b q < 3, 2 $a \leq \ $b p < 10q0 q0+6 and s $a \geq \ $b 0. This improves [7], where the case p = 2 was considered and the dierentiation by parts technique was introduced to a problem with continuous Fourier variable. Here the same technique is used, but more delicate estimates are necessary for p $\neq$ 2.


Volltext §
DOI: 10.5445/IR/1000080681
Veröffentlicht am 05.03.2018
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2018
Sprache Englisch
Identifikator ISSN: 2365-662X
urn:nbn:de:swb:90-806812
KITopen-ID: 1000080681
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 36 S.
Serie CRC 1173 ; 2018/1
Schlagwörter nonlinear Schrödinger equation, modulation spaces, wellposedness, differentiation by parts
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page