KIT | KIT-Bibliothek | Impressum | Datenschutz
Open Access Logo
DOI: 10.5445/IR/1000081590
Veröffentlicht am 06.04.2018
DOI: 10.3390/app8040528

Chemical and Molecular Variations in Commercial Epoxide Photoresists for X-ray Lithography

Vlnieska, Vitor; Zakharova, Margarita; Börner, Martin; Bade, Klaus; Mohr, Jürgen; Kunka, Danays

The quality of high aspect ratio microstructures fabricated by deep X-ray lithography is highly dependent on the photoresist material used and the process parameters applied. Even with photoresists more suitable to this process, it is common to face defects in the final optical components, such as in case of X-ray gratings. The gratings need to be fabricated with critical dimensions on a sub-micrometer and micrometer scale, with periods of few micrometers and heights of hundreds of micrometers to be used in X-ray imaging techniques such as Talbot–Lau Interferometry. During the fabrication process, these features lead to challenges such as mechanical stability, homogeneity, and defect-free grating patterns. Usually, an epoxy-based negative photoresist is used in X-ray lithography, which needs to account for the shrinkage that takes place during polymer crosslinking in order to avoid defects in the final pattern. Nowadays, photoresist material still lacks certain suitable properties (chemical and mechanical) to fabricate gratings of high quality and with acceptable reproducibility. This work presents the results of TGA, FTIR, and MALD ... mehr

Zugehörige Institution(en) am KIT Institut für Mikrostrukturtechnik (IMT)
Publikationstyp Zeitschriftenaufsatz
Jahr 2018
Sprache Englisch
Identifikator ISSN: 2076-3417
URN: urn:nbn:de:swb:90-815900
KITopen ID: 1000081590
HGF-Programm 43.23.02; LK 01
Erschienen in Applied Sciences
Band 8
Heft 4
Seiten 528
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Schlagworte X-ray lithography; negative tone photoresist; microfabrication; Talbot-Lau Interferometry
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page