KIT | KIT-Bibliothek | Impressum | Datenschutz
Open Access Logo
§
Volltext
DOI: 10.5445/IR/1000082697
Veröffentlicht am 11.05.2018

Regularity theory for nonautonomous Maxwell equations with perfectly conducting boundary conditions

Spitz, Martin

Abstract:
In this work we study linear Maxwell equations with time- and space-dependent matrix-valued permittivity and permeability on domains with a perfectly conducting boundary. This leads to an initial boundary value problem for a first order hyperbolic system with characteristic boundary. We prove a priori estimates for solutions in H$^{m}$. Moreover, we show the existence of a unique H$^{m}$-solution if the coefficients and the data are accordingly regular and satisfy certain compatibility conditions. Since the boundary is characteristic for the Maxwell system, we have to exploit the divergence conditions in the Maxwell equations in order to derive the energy-type H$^{m}$-estimates. The combination of these estimates with several regularization techniques then yields the existence of solutions in H$^{m}$.


Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht
Jahr 2018
Sprache Englisch
Identifikator ISSN: 2365-662X
URN: urn:nbn:de:swb:90-826976
KITopen ID: 1000082697
Verlag KIT, Karlsruhe
Umfang 44 S.
Serie CRC 1173 ; 2018/8
Schlagworte Maxwell equations, perfectly conducting boundary conditions, hyperbolic system, initial boundary value problem, characteristic boundary, a priori estimates, regularity theory
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page