KIT | KIT-Bibliothek | Impressum | Datenschutz

Consistent labeling of rotating maps

Gemsa, Andreas; Nöllenburg, Martin; Rutter, Ignaz


Dynamic maps that allow continuous map rotations, for example, on mobile
devices, encounter new geometric labeling issues unseen in static maps before. We study the
following dynamic map labeling problem: The input is an abstract map consisting of a set P
of points in the plane with attached horizontally aligned rectangular labels. While the map
with the point set P is rotated, all labels remain horizontally aligned. We are interested in
a consistent labeling of P under rotation, i.e., an assignment of a single (possibly empty)
active interval of angles for each label that determines its visibility under rotations such
that visible labels neither intersect each other (soft conflicts) nor occlude points in P at any
rotation angle (hard conflicts). Our goal is to find a consistent labeling that maximizes the
number of visible labels integrated over all rotation angles.
We first introduce a general model for labeling rotating maps and derive basic geometric
properties of consistent solutions. We show NP-hardness of the above optimization
problem even for unit-square labels. We then present a constant-factor approximation for
... mehr

Verlagsausgabe §
DOI: 10.5445/IR/1000083097
Veröffentlicht am 28.05.2018
DOI: 10.20382/jocg.v7i1a15
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2016
Sprache Englisch
Identifikator ISSN: 1920-180X
KITopen-ID: 1000083097
Erschienen in Journal of computational geometry
Verlag Computational Geometry Laboratory
Band 7
Heft 1
Seiten 308-331
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page