KIT | KIT-Bibliothek | Impressum | Datenschutz
Open Access Logo
§
Verlagsausgabe
DOI: 10.5445/IR/1000083766
Veröffentlicht am 12.11.2018
Originalveröffentlichung
DOI: 10.1007/s11244-018-1009-z
Scopus
Zitationen: 1

Hydrotreatment of Fast Pyrolysis Bio-oil Fractions Over Nickel-Based Catalyst

Schmitt, Caroline Carriel; Raffelt, Klaus; Zimina, Anna; Krause, Bärbel; Otto, Thomas; Rapp, Michael; Grunwaldt, Jan-Dierk; Dahmen, Nicolaus

Abstract:
Residual biomass shows potential to be used as a feedstock for fast pyrolysis bio-oil production for energetic and chemical use. Although environmentally advantageous, further catalytic upgrading is required in order to increase the bio-oil stability, by reducing reactive compounds, functional oxygen-containing groups and water content. However, bio-oils may separate in fractions either spontaneously after ageing or by fractionated condensation. Therefore the effects of upgrading on different fast pyrolysis bio-oil (FPBO) fractions obtained from a commercially available FPBO were studied by elemental analysis, GC-MS and 1H-NMR. Not only the FPBO was upgraded by catalytic hydrotreatment, but also the heavy phase fraction formed after intentional aging and phase separation. The reactions were conducted between 175 and 325 °C and 80–100 bar by using a nickel–chromium catalyst in batch experiments. The influence of the hydrotreatment conditions correlated with the composition of the upgraded products. Higher oxygen removal was obtained at higher temperatures, whereas higher pressures resulted in higher hydrogen consumption with no signi ... mehr


Zugehörige Institution(en) am KIT Institut für Katalyseforschung und -Technologie (IKFT)
Institut für Mikrostrukturtechnik (IMT)
Institut für Technische Chemie und Polymerchemie (ITCP)
Institut für Photonenforschung und Synchrotronstrahlung (IPS)
Publikationstyp Zeitschriftenaufsatz
Jahr 2018
Sprache Englisch
Identifikator ISSN: 1022-5528, 1572-9028
URN: urn:nbn:de:swb:90-837660
KITopen ID: 1000083766
HGF-Programm 56.03.10; LK 01
Erschienen in Topics in catalysis
Band 61
Heft 15-17
Seiten 1769-1782
Vorab online veröffentlicht am 15.06.2018
Schlagworte Fast pyrolysis bio-oil (FPBO); Hydrodeoxygenation; Upgrading; Nickel catalyst
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page