KIT | KIT-Bibliothek | Impressum | Datenschutz

Identifying Droughts Affecting Agriculture in Africa Based on Remote Sensing Time Series between 2000–2016: Rainfall Anomalies and Vegetation Condition in the Context of ENSO

Winkler, Karina ORCID iD icon; Gessner, Ursula; Hochschild, Volker

Abstract:

Droughts are amongst the most destructive natural disasters in the world. In large regions of Africa, where water is a limiting factor and people strongly rely on rain-fed agriculture, droughts have frequently led to crop failure, food shortages and even humanitarian crises. In eastern and southern Africa, major drought episodes have been linked to El Niño-Southern Oscillation (ENSO) events. In this context and with limited in-situ data available, remote sensing provides valuable opportunities for continent-wide assessment of droughts with high spatial and temporal resolutions. This study aimed to monitor agriculturally relevant droughts over Africa between 2000–2016 with a specific focus on growing seasons using remote sensing-based drought indices. Special attention was paid to the observation of drought dynamics during major ENSO episodes to illuminate the connection between ENSO and droughts in eastern and southern Africa. We utilized Tropical Rainfall Measuring Mission (TRMM)-based Standardized Precipitation Index (SPI) with 0.25∘ resolution and Moderate-resolution Imaging Spectroradiometer (MODIS)-derived Vegetation Condition Index (VCI) with 500 m resolution as indices for analysing the spatio-temporal patterns of droughts. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000084117
Veröffentlicht am 18.07.2018
Originalveröffentlichung
DOI: 10.3390/rs9080831
Scopus
Zitationen: 98
Web of Science
Zitationen: 86
Dimensions
Zitationen: 111
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung – Atmosphärische Umweltforschung (IMK-IFU)
KIT-Zentrum Klima und Umwelt (ZKU)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2017
Sprache Englisch
Identifikator ISSN: 2072-4292
urn:nbn:de:swb:90-841176
KITopen-ID: 1000084117
Erschienen in Remote sensing
Verlag MDPI
Band 9
Heft 8
Seiten Art.Nr.: 831
Projektinformation WASCAL (BMBF, 01LG1202F)
Vorab online veröffentlicht am 11.08.2017
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page