KIT | KIT-Bibliothek | Impressum | Datenschutz

Manifolds with aspherical singular Riemannian foliations

Corro Tapia, Diego

Abstract (englisch):

In the present work we study $A$-foliations, i.e. singular Riemannian foliations with regular leaf aspherical. The main result is that, for a simply-connected closed $(n+2)$-manifold $M$, an $A$-foliation with regular leaves of codimension $2$ in $M$ is homogeneous. In other words it is given by a smooth effective action of the torus $\mathbb{T }^n$ on $M$ by isometries.

We will give some conditions to compare two simply-connected, closed manifolds with $A$-foliations, up to foliated homeomorphism, via their leaf spaces.


Volltext §
DOI: 10.5445/IR/1000085363
Veröffentlicht am 17.08.2018
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Algebra und Geometrie (IAG)
Publikationstyp Hochschulschrift
Publikationsjahr 2018
Sprache Englisch
Identifikator urn:nbn:de:swb:90-853639
KITopen-ID: 1000085363
Verlag Karlsruher Institut für Technologie (KIT)
Umfang v, 105, VIII S.
Art der Arbeit Dissertation
Fakultät Fakultät für Mathematik (MATH)
Institut Institut für Algebra und Geometrie (IAG)
Prüfungsdatum 04.07.2018
Schlagwörter Differential Geometry, Foliations, Global geometric and topological Methods, Classifying spaces for Foliations, Differentiable Structures, Fiber Bundles, Fiberings with Singularities, Obstruction theory
Referent/Betreuer Tuschmann, W.
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page