KIT | KIT-Bibliothek | Impressum | Datenschutz

Manifolds with aspherical singular Riemannian foliations

Corro Tapia, Diego

Abstract (englisch):
In the present work we study $A$-foliations, i.e. singular Riemannian foliations with regular leaf aspherical. The main result is that, for a simply-connected closed $(n+2)$-manifold $M$, an $A$-foliation with regular leaves of codimension $2$ in $M$ is homogeneous. In other words it is given by a smooth effective action of the torus $\mathbb{T }^n$ on $M$ by isometries.

We will give some conditions to compare two simply-connected, closed manifolds with $A$-foliations, up to foliated homeomorphism, via their leaf spaces.

Open Access Logo

Volltext §
DOI: 10.5445/IR/1000085363
Veröffentlicht am 17.08.2018
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Algebra und Geometrie (IAG)
Publikationstyp Hochschulschrift
Publikationsjahr 2018
Sprache Englisch
Identifikator urn:nbn:de:swb:90-853639
KITopen-ID: 1000085363
Verlag KIT, Karlsruhe
Umfang v, 105, VIII S.
Art der Arbeit Dissertation
Fakultät Fakultät für Mathematik (MATH)
Institut Institut für Algebra und Geometrie (IAG)
Prüfungsdatum 04.07.2018
Referent/Betreuer Prof. W. Tuschmann
Schlagwörter Differential Geometry, Foliations, Global geometric and topological Methods, Classifying spaces for Foliations, Differentiable Structures, Fiber Bundles, Fiberings with Singularities, Obstruction theory
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page