KIT | KIT-Bibliothek | Impressum | Datenschutz

A space-time discontinuous Petrov- Galerkin method for acousticwaves

Ernesti, Johannes; Wieners, Christian

Abstract:

We apply the discontinuous Petrov-Galerkin (DPG) method to linear acoustic waves in space and time using the framework of first-order Friedrichs systems. Based on results for operators and semigroups of hyperbolic systems, we show that the ideal DPG method is wellposed. The main task is to avoid the explicit use of traces, which are difficult to define in Hilbert spaces with respect to the graph norm of the space-time differential operator. Then, the practical DPG method is analyzed by constructing a Fortin operator numerically. For our numerical experiments we introduce a simplified DPG method with discontinuous ansatz functions on the faces of the space-time skeleton, where the error is bounded by an equivalent conforming DPG method. Examples for a plane wave configuration confirms the numerical analysis, and the computation of a diffraction pattern illustrates a first step to applications.


Volltext §
DOI: 10.5445/IR/1000085443
Veröffentlicht am 22.08.2018
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2018
Sprache Englisch
Identifikator ISSN: 2365-662X
urn:nbn:de:swb:90-854439
KITopen-ID: 1000085443
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 27 S.
Serie CRC 1173 ; 2018/15
Schlagwörter discontinuous Petrov-Galerkin method, space-time discretizations, semigroups, variational space-time Hilbert spaces
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page