KIT | KIT-Bibliothek | Impressum | Datenschutz
Open Access Logo
§
Volltext
DOI: 10.5445/IR/1000085736
Veröffentlicht am 10.09.2018

Uniqueness of martingale solutions for the stochastic nonlinear Schrödinger equation on 3D compact manifolds

Brzezniak, Zdzislaw; Hornung, Fabian; Weis, Lutz

Abstract:
We prove pathwise uniqueness for solutions of the nonlinear Schrödinger equation with conservative multiplicative noise on compact 3D manifolds. In particular, we generalize the result by Burq, G´erard and Tzvetkov, [11], to the stochastic setting. The proof is based on deterministic and stochastic Strichartz estimates and the Littlewood-Paley decomposition.


Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht
Jahr 2018
Sprache Englisch
Identifikator ISSN: 2365-662X
URN: urn:nbn:de:swb:90-857364
KITopen ID: 1000085736
Verlag KIT, Karlsruhe
Umfang 21 S.
Serie CRC 1173 ; 2018/18
Schlagworte nonlinear Schrödinger equation, Stratonovich noise, Strichartz estimates, pathwise uniqueness, Littlewood-Paley decomposition
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page